cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A004685 Fibonacci numbers written in base 2.

Original entry on oeis.org

0, 1, 1, 10, 11, 101, 1000, 1101, 10101, 100010, 110111, 1011001, 10010000, 11101001, 101111001, 1001100010, 1111011011, 11000111101, 101000011000, 1000001010101, 1101001101101, 10101011000010, 100010100101111, 110111111110001, 1011010100100000, 10010010100010001
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004686 .. A004694: Fibonacci numbers written in base 3, 4, ..., 13.
Cf. A004676 .. A004684: Primes written in base 2, 3, 4, ..., 11.
Cf. A004643, ..., A004668 : powers of 2 resp. of 3 in base 3, 4, 5, ..., 26.

Programs

  • Magma
    [Seqint(Intseq(Fibonacci(n),2)): n in [0..50]]; // G. C. Greubel, Oct 09 2018
  • Maple
    with(combinat): seq(convert(fibonacci(n),binary),n=0..25); # Muniru A Asiru, Oct 10 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[Fibonacci[n], 2]], {n, 0, 30}] (* Stefan Steinerberger, Apr 14 2006 *)
  • PARI
    a(n)=subst(Pol(binary(fibonacci(n))),'x,10) \\ Charles R Greathouse IV, Feb 03 2014
    
  • PARI
    apply( n->fromdigits(binary(fibonacci(n))), [0..19]) \\ M. F. Hasler, Jun 22 2018
    
  • PARI
    vector(50, n, n--; fromdigits(digits(fibonacci(n), 2))) \\ G. C. Greubel, Oct 09 2018
    

Formula

a(n) = A007088(A000045(n)). - Jonathan Vos Post, Aug 24 2010

A004642 Powers of 2 written in base 3.

Original entry on oeis.org

1, 2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221, 2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, 1011120101000101, 2100010202000202
Offset: 0

Views

Author

Keywords

Comments

When n is odd, a(n) ends in 1, and when n is even, a(n) ends in 2, since 2^n is congruent to 1 mod 3 when n is odd and to 2 mod 3 when n is even. - Alonso del Arte Dec 11 2009
Sloane (1973) conjectured a(n) always has a 0 between the most and least significant digits if n > 15 (see A102483 and A346497).
Erdős (1978) conjectured that for n > 8 a(n) has at least one 2 (see link to Terry Tao's blog). - Dmitry Kamenetsky, Jan 10 2017

References

  • N. J. A. Sloane, The Persistence of a Number, J. Recr. Math. 6 (1973), 97-98.

Crossrefs

Cf. A000079: powers of 2 written in base 10.
Cf. A004643, ..., A004655: powers of 2 written in base 4, 5, ..., 16.
Cf. A004656, A004658, A004659, ..., A004663: powers of 3 written in base 2, 4, 5, ..., 9.

Programs

  • Magma
    [Seqint(Intseq(2^n, 3)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[2^n, 3]], {n, 25}] (* Alonso del Arte Dec 11 2009 *)
  • PARI
    a(n)=fromdigits(digits(2^n,3)) \\ M. F. Hasler, Jun 23 2018
    

A004656 Powers of 3 written in base 2.

Original entry on oeis.org

1, 11, 1001, 11011, 1010001, 11110011, 1011011001, 100010001011, 1100110100001, 100110011100011, 1110011010101001, 101011001111111011, 10000001101111110001, 110000101001111010011, 10010001111101101111001
Offset: 0

Views

Author

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002, pp. 120 and 903.

Crossrefs

Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16
Cf. A000244, A004658, A004659, ... : powers of 3 written in base 10, 4, 5, ...

Programs

  • Magma
    [Seqint(Intseq(3^n, 2)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[ FromDigits[ IntegerDigits[3^n, 2]], {n, 0, 14}]
  • PARI
    a(n)=fromdigits(binary(3^n)) \\ M. F. Hasler, Jun 23 2018
    

A073053 Apply DENEAT operator (or the Sisyphus function) to n.

Original entry on oeis.org

101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

DENEAT(n): concatenate number of even digits in n, number of odd digits and total number of digits. E.g., 25 -> 1.1.2 = 112 (Digits: Even, Not Even, And Total). Leading zeros are then omitted.
This is also known as the Sisyphus function. - N. J. A. Sloane, Jun 25 2018
Repeated application of the DENEAT operator reduces all numbers to 123. This is easy to prove. Compare A073054, A100961. - N. J. A. Sloane Jun 18 2005

Examples

			a(1) = 0.1.1 -> 11.
a(10000000000) = 10111 because 10000000000 has 10 even digits, 1 odd digit and 11 total digits
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (Jan 01 1999), p. 2.
  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.
  • M. Zeger, Fatal attraction, Mathematics and Computer Education, 27:2 (1993), 118-123.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A073053 := proc(n)
        local e,o,L ;
        if n = 0 then
            0 ;
        else
            e := A196563(n) ;
            o := A196564(n) ;
            L := [e,o,e+o] ;
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jul 13 2012
    # Maple code based on R. J. Mathar's code for A171797, added by N. J. A. Sloane, May 12 2019 (Start)
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1, n2, n1-n2]) ; end proc:
    A073053 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1-n2, n1]) ; end proc:
    seq(A073053(n), n=1..80) ; (End)
    L:=proc(n) if n=0 then 1 else floor(evalf(log(n)/log(10)))+1; fi; end;
    S:=proc(n) local Le,Ld,Lt,t1,e,d,t; global L;
    t1:=convert(n,base,10); e:=0; d:=0; t:=nops(t1);
    for i from 1 to t do if (t1[i] mod 2) = 0 then e:=e+1; else d:=d+1; fi; od:
    Le:=L(e); Ld:=L(d); Lt:=L(t);
    if e=0 then 10^Lt*d+t
    elif d=0 then 10^(Ld+Lt)*e+10^Lt*d+t
    else 10^(Ld+Lt)*e+10^Lt*d+t; fi;
    end;
    [seq(S(n),n=1..200)]; # N. J. A. Sloane, Jun 25 2018
    # alternative Maple program:
    a:= n-> (l-> (e-> parse(cat(e, (h-> [h-e, h][])(nops(l))))
        )(nops(select(x-> x::even, l))))(convert(n, base, 10)):
    seq(a(n), n=0..200);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ f[n], {n, 0, 55}] (* Robert G. Wilson v, Jun 09 2005 *)
    s={};Do[id=IntegerDigits[n];ev=Select[id, EvenQ];ne=Select[id, OddQ];fd=FromDigits[{Length[ev], Length[ne], Length[id]}]; s=Append[s, fd], {n, 81}];SameQ[newA073053-s] (* Zak Seidov *)
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]] Array[ deneat,60,0]// Flatten (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)-e) + str(len(s)))
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 21 2022

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
a(0) added by N. J. A. Sloane, May 12 2019

A004655 Powers of 2 written in base 16.

Original entry on oeis.org

1, 2, 4, 8, 10, 20, 40, 80, 100, 200, 400, 800, 1000, 2000, 4000, 8000, 10000, 20000, 40000, 80000, 100000, 200000, 400000, 800000, 1000000, 2000000, 4000000, 8000000, 10000000, 20000000, 40000000, 80000000
Offset: 0

Views

Author

Keywords

Comments

10^(Floor[n/4]) | a(n). The first term of each value cycles the pattern {1, 2, 4, 8}. - G. C. Greubel, Sep 10 2018

Crossrefs

Cf. A000079, A004643, ..., A004654: powers of 2 written in base 10, 4, 5, ..., 15.
Cf. A000244, A004656, A004658, A004659, ... : powers of 3 in base 10, 2, 4, 5, ...

Programs

  • Magma
    [Seqint(Intseq(2^n, 16)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
    
  • Mathematica
    Table[FromDigits[IntegerDigits[2^n, 16]], {n, 50}] (* G. C. Greubel, Sep 11 2018 *)
  • PARI
    apply( a(n)=2^(n%4)*10^(n\4), [0..30]) \\ M. F. Hasler, Jun 22 2018
    
  • Python
    def A004655(n): return 10**(n>>2)<<(n&3) # Chai Wah Wu, Jan 27 2023

Formula

a(n) = 2^(n mod 4)*10^floor(n/4). - M. F. Hasler, Jun 22 2018
From Chai Wah Wu, Sep 03 2020: (Start)
a(n) = 10*a(n-4) for n > 3.
G.f.: -(2*x + 1)*(4*x^2 + 1)/(10*x^4 - 1). (End)

A004658 Powers of 3 written in base 4.

Original entry on oeis.org

1, 3, 21, 123, 1101, 3303, 23121, 202023, 1212201, 10303203, 32122221, 223033323, 2001233301, 12011033103, 102033231321, 312233021223, 2210031131001, 13230220113003, 113011321011021, 1011101223033123
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000244, A004656, A004659, ... : powers of 3 written in base 10, 2, 5, ...
Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16

Programs

  • Magma
    [Seqint(Intseq(3^n, 4)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[FromDigits[IntegerDigits[3^n, 4]], {n, 0, 40}] (* Vincenzo Librandi, Jun 07 2013 *)
  • PARI
    a(n,b=4,m=3)=fromdigits(digits(m^n,b)) \\ M. F. Hasler, Jun 22 2018
    

A004668 Powers of 3 written in base 26. (Next term contains a non-decimal digit.)

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 121, 363
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Aliquot divisors of 1089. - Omar E. Pol, Jun 10 2014
The above comment refers to the first 8 terms only. The next term would contain a digit 18, commonly coded as I, if A, B, ... are used for digits > 9. But this does not mean that the sequence is finite. Many other encodings of digits > 9 are conceivable (e.g., using 000, 100, 110, ..., 250 for digits 0, 10, 11, ..., 25). - M. F. Hasler, Jun 22 2018

Crossrefs

Cf. A000244, A004656, A004658, A004659, ..., A004667: powers of 3 in base 10, 2, 4, 5, ..., 13.
Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16.

Programs

  • Mathematica
    Select[Divisors[1089], # < 1089 &] (* Wesley Ivan Hurt, Jun 13 2014 *)
  • PARI
    fordiv(1089, d, (d<1089) && print1(d, ", ")) \\ Michel Marcus, Jun 14 2014
    
  • PARI
    divisors(1089)[^-1] \\ M. F. Hasler, Jun 22 2018
    
  • PARI
    apply( A004668(n,b=26,m=3)=fromdigits(digits(m^n,b)), [0..8]) \\ This implements one possible continuation of the sequence beyond n = 7: write digits in decimal and carry over (so 363*3 = 9I9[26] -> 9*100 + 18*10 + 9 = 1089). - M. F. Hasler, Jun 22 2018

A368866 The smallest positive number such that 2^a(n) when written in base n contains adjacent equal digits.

Original entry on oeis.org

2, 2, 4, 5, 6, 3, 6, 12, 16, 14, 11, 15, 8, 4, 8, 23, 16, 14, 16, 21, 9, 17, 20, 14, 30, 27, 16, 15, 10, 5, 10, 29, 48, 14, 46, 19, 18, 15, 32, 36, 27, 36, 18, 12, 56, 41, 37, 24, 58, 22, 26, 46, 58, 40, 29, 24, 36, 14, 20, 18, 12, 6, 12, 60, 62, 50, 49, 50, 20, 35, 36, 55, 61, 52, 53, 77
Offset: 2

Views

Author

Scott R. Shannon, Jan 08 2024

Keywords

Comments

In the first 10000 terms the largest value is a(9031) = 1924, with a corresponding power of 2 of approximately 1.52*10^579.

Examples

			a(2) = 2 as 2^2 = 4 written in base 2 = 100_2 which contains adjacent 0's.
a(6) = 6 as 2^6 = 64 written in base 6 = 144_6 which contains adjacent 4's.
a(10) = 16 as 2^16 = 65536 written in base 10 = 65536_10 which contains adjacent 5's.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,L;
      for k from 1 do
        L:= convert(2^k,base,n);
        if member(0, L[2..-1]-L[1..-2]) then return k fi
      od
    end proc:
    map(f, [$2..100]); # Robert Israel, Jan 09 2024
  • Python
    from itertools import count
    from sympy.ntheory.factor_ import digits
    def A368866(n):
        k = 1
        for m in count(1):
            k <<= 1
            s = digits(k,n)[1:]
            if any(s[i]==s[i+1] for i in range(len(s)-1)):
                return m # Chai Wah Wu, Jan 08 2024

A364049 a(n) is the least k such that the base-n digits of 2^k are not all distinct.

Original entry on oeis.org

2, 2, 4, 5, 6, 3, 6, 11, 16, 14, 11, 12, 8, 4, 8, 15, 16, 12, 16, 18, 9, 17, 15, 14, 24, 13, 16, 15, 10, 5, 10, 19, 24, 14, 21, 15, 18, 15, 19, 17, 17, 28, 18, 12, 24, 23, 31, 24, 31, 20, 26, 44, 35, 33, 25, 18, 36, 14, 14, 18, 12, 6, 12, 23, 45, 37, 38, 24, 20, 35, 36, 26, 51, 31, 33, 47, 34, 34
Offset: 2

Views

Author

Robert Israel, Jul 03 2023

Keywords

Examples

			a(10) = 16 because 2^16 = 65536 does not have all distinct digits in base 10, while 2^k does have all distinct digits for 1 <= k <= 15.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k,L;
      for k from 2 do
        L:= convert(2^k,base,n);
        if nops(L) <> nops(convert(L,set)) then return k fi
      od;
    end proc:
    map(f, [$2..100]);
  • Python
    from itertools import count
    from sympy.ntheory import digits
    def a(n): return next(k for k in count(2) if len(set(d:=digits(1<Michael S. Branicky, Jul 05 2023

A305395 Records in A073053.

Original entry on oeis.org

11, 101, 112, 202, 213, 303, 314, 404, 415, 505
Offset: 1

Views

Author

N. J. A. Sloane, Jun 25 2018

Keywords

Comments

The record-holders are the powers of 2 written in base 4, A004643.

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

Showing 1-10 of 16 results. Next