cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001142 a(n) = Product_{k=1..n} k^(2k - 1 - n).

Original entry on oeis.org

1, 1, 2, 9, 96, 2500, 162000, 26471025, 11014635520, 11759522374656, 32406091200000000, 231627686043080250000, 4311500661703860387840000, 209706417310526095716965894400, 26729809777664965932590782608648192
Offset: 0

Views

Author

Keywords

Comments

Absolute value of determinant of triangular matrix containing binomial coefficients.
These are also the products of consecutive horizontal rows of the Pascal triangle. - Jeremy Hehn (ROBO_HEN5000(AT)rose.net), Mar 29 2007
Limit_{n->oo} a(n)*a(n+2)/a(n+1)^2 = e, as follows from lim_{n->oo} (1 + 1/n)^n = e. - Harlan J. Brothers, Nov 26 2009
A000225 gives the positions of odd terms. - Antti Karttunen, Nov 02 2014
Product of all unreduced fractions h/k with 1 <= k <= h <= n. - Jonathan Sondow, Aug 06 2015
a(n) is a product of the binomial coefficients from the n-th row of the Pascal triangle, for n= 0, 1, 2, ... For n > 0, a(n) means the number of all maximum chains in the poset formed by the n-dimensional Boolean cube {0,1}^n and the relation "precedes by weight". This relation is defined over {0,1}^n as follows: for arbitrary vectors u, v of {0,1}^n we say that "u precedes by weight v" if wt(u) < wt(v) or if u = v, where wt(u) denotes the (Hamming) weight of u. For more details, see the sequence A051459. - Valentin Bakoev, May 17 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A004788, A056606 (squarefree kernel), A256113.

Programs

  • GAP
    List([0..15], n-> Product([0..n], k-> Binomial(n,k) )); # G. C. Greubel, May 23 2019
    
  • Haskell
    a001142 = product . a007318_row -- Reinhard Zumkeller, Mar 16 2015
    
  • Magma
    [(&*[Binomial(n,k): k in [0..n]]): n in [0..15]]; // G. C. Greubel, May 23 2019
    
  • Maple
    a:=n->mul(binomial(n,k), k=0..n): seq(a(n), n=0..14); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    Table[Product[k^(2*k - 1 - n), {k, n}], {n, 0, 20}] (* Harlan J. Brothers, Nov 26 2009 *)
    Table[Hyperfactorial[n]/BarnesG[n+2], {n, 0, 20}] (* Peter Luschny, Nov 29 2015 *)
    Table[Product[(n - k + 1)^(n - 2 k + 1), {k, 1, n}], {n, 0, 20}] (* Harlan J. Brothers, Aug 26 2023 *)
  • Maxima
    a(n):= prod(binomial(n,k),k,0,n); n : 15; for i from 0 thru n do print (a(i)); /* Valentin Bakoev, May 17 2019 */
    
  • PARI
    for(n=0,16,print(prod(m=1,n,binomial(n,m))))
    
  • PARI
    A001142(n) = prod(k=1, n, k^((k+k)-1-n)); \\ Antti Karttunen, Nov 02 2014
    
  • Python
    from math import factorial, prod
    from fractions import Fraction
    def A001142(n): return prod(Fraction((k+1)**k,factorial(k)) for k in range(1,n)) # Chai Wah Wu, Jul 15 2022
  • Sage
    a = lambda n: prod(k^k/factorial(k) for k in (1..n))
    [a(n) for n in range(20)] # Peter Luschny, Nov 29 2015
    
  • Scheme
    (define (A001142 n) (mul (lambda (k) (expt k (+ k k -1 (- n)))) 1 n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    ;; Antti Karttunen, Oct 28 2014
    

Formula

a(n) = C(n, 0)*C(n, 1)* ... *C(n, n).
From Harlan J. Brothers, Nov 26 2009: (Start)
a(n) = Product_{j=1..n-2} Product_{k=1..j} (1+1/k)^k, n >= 3.
a(1) = a(2) = 1, a(n) = a(n-1) * Product_{k=1..n-2} (1+1/k)^k. (End)
a(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n). - Peter Luschny, Jun 24 2012
a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 + 1/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = Product_{i=1..n} Product_{j=1..i} (i/j). - Pedro Caceres, Apr 06 2019
a(n) = Product_{k=1..n} (n - k + 1)^(n - 2*k + 1). - Harlan J. Brothers, Aug 26 2023

Extensions

More terms from James Sellers, May 01 2000
Better description from Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001

A256113 Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 2, 3, 5, 3, 5, 7, 2, 5, 7, 2, 3, 7, 2, 3, 5, 7, 2, 3, 5, 7, 11, 2, 3, 5, 7, 11, 2, 3, 5, 11, 13, 2, 3, 7, 11, 13, 3, 5, 7, 11, 13, 2, 3, 5, 7, 11, 13, 2, 5, 7, 11, 13, 17, 2, 3, 5, 7, 11, 13, 17, 2, 3, 7, 11, 13, 17, 19, 2, 3, 5, 11, 13
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 16 2015

Keywords

Examples

			.  n |   T(n,k)   |                A001142(n) | A007318(n,0..n)
. ---+------------+---------------------------+-------------------------
.  1 | 1          |                         1 | 1  1
.  2 | 2          |                         2 | 1  2  1
.  3 | 3          |                         9 | 1  3  3   1
.  4 | 2 3        |                        96 | 1  4  6   4   1
.  5 | 2 5        |                      2500 | 1  5 10  10   5   1
.  6 | 2 3 5      |                    162000 | 1  6 15  20  15   6   1
.  7 | 3 5 7      |                  26471025 | 1  7 21  35  35  21   7   1
.  8 | 2 5 7      |               11014635520 | 1  8 28  56  70  56  28 ...
.  9 | 2 3 7      |            11759522374656 | 1  9 36  84 126 126  84 ...
. 10 | 2 3 5 7    |         32406091200000000 | 1 10 45 120 210 252 210 ...
. 11 | 2 3 5 7 11 |     231627686043080250000 | 1 11 55 165 330 462 462 ...
. 12 | 2 3 5 7 11 | 4311500661703860387840000 | 1 12 66 220 495 792 924 ...
		

Crossrefs

Cf. A007318, A027748, A001142, A004788 (row lengths), A056606 (row products).

Programs

  • Haskell
    a256113 n k = a256113_tabf !! (n-1) !! (n-1)
    a256113_row n = a256113_tabf !! (n-1)
    a256113_tabf = map a027748_row $ tail a001142_list

A158973 a(n) = count of numbers k <= n such that all proper divisors of k are divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 5, 7, 6, 7, 6, 11, 7, 9, 9, 10, 8, 12, 9, 13, 11, 11, 10, 17, 11, 12, 12, 14, 11, 18, 12, 16, 14, 14, 14, 20, 13, 15, 15, 20, 14, 20, 15, 19, 20, 17, 16, 25, 17, 20, 18, 20, 17, 23, 19, 24, 19, 19, 18, 29, 19, 21, 24, 24, 21, 25, 20, 24, 22, 27, 21, 32, 22, 24, 26
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2009

Keywords

Comments

For primes p, a(p) = A036234(p) = A000720(p) + 1.

Examples

			For n = 8 we have the following proper divisors for k <= n: {1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}. Only k = 6 has a proper divisor that is not a divisor of 8, viz. 3. Hence a(8) = 7.
		

Crossrefs

Programs

  • Magma
    [ #[ k: k in [1..n] | forall(t){ d: d in Divisors(k) | d eq k or d in Divisors(n) } ]: n in [1..75] ];
    
  • Maple
    N:= 1000: # to get a(1) to a(N)
    A:= Vector(N, numtheory:-tau):
    for p in select(isprime,[2,seq(i,i=3..N,2)]) do
    for d from 0 to floor(log[p](N))-1 do
      R:= [seq(seq(p^d*(i+p*j), j=1..floor((N/p^d - i)/p)), i=1..p-1)];
      A[R]:= map(`+`,A[R],1);
    od
    od:
    convert(A,list); # Robert Israel, Nov 24 2015
  • Mathematica
    f[n_] := Block[{d = Most@ Divisors@ n}, Select[Range@ n, Union[Most@ Divisors@ #, d] == d &]]; Array[Length@ f@ # &, {75}] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    a004788(n) = {sfp = Set(); for (k=1, n-1, sfp = setunion(sfp, Set(factor(binomial(n, k))[, 1]))); return (length(sfp));}
    a(n) = numdiv(n) + a004788(n-1); \\ Altug Alkan, Nov 25 2015

Formula

a(n) = A000005(n) + A004788(n-1). - Vladeta Jovovic, Apr 07 2009 (Corrected by Altug Alkan, Nov 25 2015)

Extensions

Edited and extended by Klaus Brockhaus, Apr 06 2009

A004789 Least k such that number of distinct prime divisors of the numbers in row k of Pascal's triangle is n.

Original entry on oeis.org

0, 2, 4, 6, 10, 11, 16, 18, 22, 23, 29, 35, 39, 42, 44, 47, 55, 59, 62, 69, 71, 78, 79, 83, 89, 100, 102, 104, 107, 111, 119, 130, 131, 138, 139, 149, 153, 159, 164, 167, 174, 179, 181, 191, 194, 197, 199, 215, 223, 228, 230, 233, 239, 250, 251, 259, 263, 269, 272, 279, 282
Offset: 0

Views

Author

Keywords

Comments

A004788(a(n)) = n and A004788(m) != n for m < a(n). - Reinhard Zumkeller, Mar 15 2015

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a004789 = fromJust . (`elemIndex` a004788_list)
    -- Reinhard Zumkeller, Mar 15 2015
  • PARI
    a(n) = {irow = 0; while(omega(prod(i=0, irow, binomial(irow, i)))!=n, irow++); return (irow);} \\ Michel Marcus, May 13 2013
    

A323444 Sum of exponents in prime-power factorization of Product_{k=0..n} binomial(n,k) (A001142).

Original entry on oeis.org

0, 0, 1, 2, 6, 6, 11, 10, 23, 28, 33, 28, 45, 38, 44, 50, 86, 74, 96, 82, 106, 110, 114, 96, 147, 150, 153, 182, 211, 184, 215, 186, 281, 280, 279, 278, 347, 308, 306, 304, 380, 336, 374, 328, 368, 408, 403, 352, 489, 482, 524, 516, 559, 498, 596, 586, 686, 674
Offset: 0

Views

Author

Daniel Suteu, Jan 15 2019

Keywords

Comments

Also sum of exponents in prime-power factorization of hyperfactorial(n) / superfactorial(n).

Examples

			a(4) = 6 because C(4,0)*C(4,1)*C(4,2)*C(4,3)*C(4,4) = 2^5 * 3^1 and 5 + 1 = 6, where C(n,k) is the binomial coefficient.
		

Crossrefs

Programs

  • Mathematica
    Array[Sum[PrimeOmega@ Binomial[#, k], {k, 0, #}] &, 57] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = sum(k=0, n, bigomega(binomial(n, k)));
    
  • PARI
    a(n) = my(t=0); sum(k=1, n, my(b=bigomega(k)); t+=b; k*b-t);
    
  • PARI
    first(n) = my(res = List([0]), r=0, t=0, b=0); for(k=1, n, b=bigomega(k); t += b; r += k*b-t; listput(res, r)); res \\ adapted from Daniel Suteu \\ David A. Corneth, Jan 16 2019

Formula

a(n) = A303281(n) - A303279(n), for n > 0.
a(n) = A001222(A001142(n)).
Showing 1-5 of 5 results.