cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A101794 Numbers k such that 4*k-1, 8*k-1, 16*k-1 and 32*k-1 are all primes.

Original entry on oeis.org

45, 90, 675, 885, 3030, 4290, 6870, 13410, 14460, 15855, 17850, 18675, 20625, 21885, 25350, 26820, 26925, 28230, 30525, 30705, 31710, 31785, 33375, 34860, 41685, 41940, 57435, 63420, 63570, 71805, 74025, 78585, 83865, 85230, 93075
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719 and 32*45-1 = 1439 are primes, so 45 is a term.
		

Crossrefs

Subsequence of A005099, A005122 and A101790.
Subsequence: A101994.

Programs

  • Mathematica
    Select[Range[10^5], And @@ PrimeQ[2^Range[2, 5]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1); \\ Amiram Eldar, May 13 2024

A101994 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1 and 64*k-1 are all primes.

Original entry on oeis.org

45, 13410, 15855, 31710, 31785, 63570, 74025, 85230, 151830, 202635, 267300, 280665, 399675, 405405, 455250, 466560, 478170, 480240, 511335, 534600, 539475, 561330, 569520, 589305, 666945, 716460, 743160, 748215, 766785, 799350, 860835
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*45-1 = 179, 8*45-1 = 359, 16*45-1 = 719, 32*45-1 = 1439 and 64*45-1 = 2879 are primes, so 45 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 6]*# - 1] &] (* Amiram Eldar, May 13 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1) && isprime(32*k-1) && isprime(64*k-1); \\ Amiram Eldar, May 13 2024

A123986 Numbers n for which 4n+1 and 4n+3 are primes.

Original entry on oeis.org

1, 4, 7, 10, 25, 34, 37, 49, 67, 70, 115, 130, 142, 154, 160, 202, 205, 214, 220, 262, 265, 307, 319, 322, 325, 370, 424, 430, 469, 487, 499, 520, 532, 535, 559, 577, 595, 637, 664, 682, 697, 700, 742, 814, 832, 847, 865, 889, 895, 955, 979, 982, 1000, 1012, 1039
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Comments

All terms == 1 mod 3. - Zak Seidov, Dec 02 2011
Intersection of A005098 and A095278. - Michel Marcus, Jan 31 2015

Crossrefs

Programs

  • Magma
    [n: n in [0..1100] |IsPrime(4*n+1) and IsPrime(4*n+3)]; // Vincenzo Librandi, Feb 01 2015
  • Mathematica
    Select[Range[1100], And @@ PrimeQ /@ ({1, 3} + 4#) &] (* Ray Chandler, Nov 05 2006 *)
    nn=10000;k=0;x=1;re=Reap[While[kZak Seidov, Dec 02 2011 *)

Extensions

Extended by Ray Chandler, Nov 05 2006

A101790 Numbers k such that 4*k-1, 8*k-1 and 16*k-1 are all primes.

Original entry on oeis.org

3, 45, 90, 180, 255, 258, 363, 378, 453, 483, 615, 675, 705, 873, 885, 978, 1350, 1533, 1770, 1788, 2673, 2793, 2868, 3030, 3225, 3240, 4203, 4290, 4548, 4830, 4998, 5103, 5253, 5295, 5568, 5775, 5955, 6060, 6138, 6870, 7383, 7713, 8133, 8370, 8580, 9000
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*3 - 1 = 11, 8*3 - 1 = 23 and 16*3 - 1 = 47 are primes, so 3 is a term.
		

Crossrefs

Subsequence of A005099 and A005122.
Subsequences: A101794, A101994.

Programs

  • Magma
    [n: n in [0..10000] | IsPrime(4*n-1) and IsPrime(8*n-1) and IsPrime(16*n-1)]; // Vincenzo Librandi, Nov 17 2010
    
  • Mathematica
    Select[Range[10^4], And @@ PrimeQ[2^Range[2, 4]*# - 1] &] (* Amiram Eldar, May 12 2024 *)
  • PARI
    is(k) = isprime(4*k-1) && isprime(8*k-1) && isprime(16*k-1); \\ Amiram Eldar, May 12 2024

A089986 Numbers n such that 4n + 7 is prime.

Original entry on oeis.org

-1, 0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 19, 24, 25, 30, 31, 33, 36, 39, 40, 43, 46, 48, 51, 54, 55, 58, 61, 64, 66, 69, 75, 76, 81, 85, 88, 90, 93, 94, 103, 106, 108, 109, 114, 115, 118, 120, 121, 123, 124, 129, 135, 139, 141, 145, 148, 150, 153, 156, 159, 160, 163, 169
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 13 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A005099 ((( Primes = -1 mod 4 ) + 1)/4), A005098 (4n+1 is prime), A095278 (4n+3 is prime), A111215 (4n+5 is prime).

Programs

Formula

a(n) = A005099(n) - 2 = A095278(n) - 1.

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008

A156287 Numbers k such that 4*k-5 is a prime number.

Original entry on oeis.org

2, 3, 4, 6, 7, 9, 12, 13, 16, 18, 19, 21, 22, 27, 28, 33, 34, 36, 39, 42, 43, 46, 49, 51, 54, 57, 58, 61, 64, 67, 69, 72, 78, 79, 84, 88, 91, 93, 96, 97, 106, 109, 111, 112, 117, 118, 121, 123, 124, 126, 127, 132, 138, 142, 144, 148, 151, 153, 156, 159, 162, 163, 166
Offset: 1

Views

Author

Vincenzo Librandi, Feb 07 2009

Keywords

Comments

Two more than the associated A095278, one more than the associated A005099. - R. J. Mathar, Jan 05 2011

Crossrefs

Programs

A101320 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1 and 128*k-1 are all primes.

Original entry on oeis.org

15855, 31785, 267300, 280665, 399675, 561330, 946050, 990510, 1022220, 1082115, 1164735, 1283250, 1303875, 1309545, 1514880, 1669065, 1924410, 2850225, 3078675, 3092760, 3492270, 3536385, 3611205, 3920670, 4148970, 4454775
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*15855-1, 8*15855-1, 16*15855-1, 32*15855-1, 64*15855-1 and 128*15855-1 are primes, so 15855 is a term.
		

Crossrefs

Cf. A002515.
Subsequence of A005099, A005122, A101790, A101794 and A101994.

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 7]*# - 1] &] (* Amiram Eldar, May 23 2024 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(4*n-1) && ispseudoprime(8*n-1) && ispseudoprime(16*n-1) && ispseudoprime(32*n-1) && ispseudoprime(64*n-1) && ispseudoprime(128*n-1), print1(n, ", "))) \\ Iain Fox, Nov 23 2017

A190105 a(n) = (3*A002145(n) - 1)/4.

Original entry on oeis.org

2, 5, 8, 14, 17, 23, 32, 35, 44, 50, 53, 59, 62, 77, 80, 95, 98, 104, 113, 122, 125, 134, 143, 149, 158, 167, 170, 179, 188, 197, 203, 212, 230, 233, 248, 260, 269, 275, 284, 287, 314, 323, 329, 332, 347, 350, 359, 365, 368, 374, 377, 392, 410, 422, 428, 440
Offset: 1

Views

Author

J. M. Bergot, May 04 2011

Keywords

Comments

For primes p of the form 4n+3, in the order of A002145, let us seek solutions for prime p|(a^x + b^y) or p|(a^y + b^x) subject to the conditions p = a+b = x+y and 0 < a,b,x,y < p. The larger of the two exponents x and y is inserted into the sequence.
If either of (a,b) is a primitive root of p, there is a unique solution, either p|(a^x + b^y) or p|(a^y + b^x). If neither is a primitive root (see A060749), there are multiple solutions and p|(a^x + b^y) or p|(a^y + b^x) will always be one of them for some of the given exponents (x,y) contributing to the sequence.

Examples

			For p=43=A002145(7), (x,y)=(11,32) because 43-(43+1)/4=32; hence x=43-32.  With (a,b)=(12,31) the unique solution is 43|(12^11 + 31^32) because 12 is a primitive root of 43. The larger of 11 and 32 is a(7)=32 in the sequence. For 43 multiple solutions occur when neither of the pairs (a,b) is a primitive root of 43: p divides each of 11^4 + 32^39, 11^18 + 32^25, 11^32 + 32^11; note that the exponents (11,32) occur in the last entry.
		

Crossrefs

Cf. A005099 is the list of x in (x,y).

Programs

  • Maple
    for n from 1 to 200 do p:=4*n-1: if(isprime(p))then printf("%d, ", (3*p-1)/4); fi: od: # Nathaniel Johnston, May 18 2011
  • Mathematica
    A002145 := Select[4 Range[300] - 1, PrimeQ]; Table[(3*A002145[[n]] - 1)/4, {n, 1, 60}] (* G. C. Greubel, Nov 07 2018 *)

A045752 4n-1 is composite.

Original entry on oeis.org

4, 7, 9, 10, 13, 14, 16, 19, 22, 23, 24, 25, 28, 29, 30, 31, 34, 36, 37, 39, 40, 43, 44, 46, 47, 49, 51, 52, 54, 55, 58, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 91, 93, 94, 97, 98, 99, 100
Offset: 1

Views

Author

Keywords

Comments

Apparently the same as "numbers k that can be written as 4xy + x - y for x>0,y>0". - Ron R Spencer, Jul 28 2016
From Wolfdieter Lang, Aug 30 2016: (Start)
Proof: If the 3 (mod 4) number 4*k-1 is composite it can be written as a product of a number a == 3 (mod 4) and powers of numbers 1 (mod 4), that is as a product of
a = 4*x-1 and b = 4*y+1. Then 4*k-1 = (4*x-1)*(4*y+1) or k = 4*x*y + x - y. And conversely, if k = 4*x*y + x - y then 4*k-1 = (4*x-1)*(4*y+1), that is composite.
The example of Vincenzo Librandi below is equivalent to "numbers m that can be written as 4*H*K + 3*H + K +1 for H>0, K>0" (consider h, k of opposite parity, which is necessary to have even 2*h*k + k + h + 1. W.l.o.g. take h = 2*H and k = 2*K+1). Then 4*m - 1 = (4*K+3)*(4*H+1). This is equivalent to Ron R Spencer's statement with K=x-1, H=y. (End)

Examples

			7 belongs to the sequence because 7*4-1=27 is not a prime.
Distribution of the positive terms in the following triangular array:
*;
4,*;
*,9,*;
7,*,16,*;
*,14,*,25,*;
10,*,23,*,36,*; etc.
where * marks the non-integer values of (2*h*k + k + h + 1)/2 with h >= k >= 1. - _Vincenzo Librandi_, Jul 29 2016
		

Crossrefs

Complement of A005099.

Programs

  • Magma
    [n: n in [1..120] |not IsPrime(4*n-1)]; // Vincenzo Librandi, Jul 29 2016
  • Maple
    remove(t -> isprime(4*t-1), [$1..1000]); # Robert Israel, Jul 29 2016
  • Mathematica
    Select[Range@ 100, CompositeQ[4 # - 1] &] (* Michael De Vlieger, Jul 28 2016 *)
  • PARI
    isok(n) = ! isprime(4*n-1); \\ Michel Marcus, Sep 28 2013
    

A333721 Numbers k such that k + 1, 2k + 1, 3k + 1, 4k + 1, and 6k + 1 are all prime.

Original entry on oeis.org

1530, 4260, 25410, 26040, 78540, 111720, 174990, 211050, 214830, 395430, 403260, 409290, 459690, 487830, 512820, 711120, 779790, 910560, 1023750, 1135950, 1280370, 1312350, 1451520, 1464810, 1487070, 1563510, 1623360, 1698060, 1824330, 1933680, 2006340, 2097480
Offset: 1

Views

Author

Pedro Caceres, May 04 2020

Keywords

Comments

All terms are multiples of 6.
All terms are multiples of 30. - Robert Israel, Jun 17 2020

Examples

			25410 is in the sequence because 25411, 50821, 76231, 101641, 152461 are all prime.
		

Crossrefs

Programs

  • Maple
    select(t -> andmap(isprime, [t+1,2*t+1,3*t+1,4*t+1,6*t+1]), [seq(i,i=30..3*10^6,30)]); # Robert Israel, Jun 17 2020
  • PARI
    isok(m)={for(i=1, 6, if(i<>5&&!isprime(i*m+1), return(0))); 1}
    { forstep(n=0, 3*10^6, 6, if(isok(n), print1(n, ", "))) } \\ Andrew Howroyd, May 04 2020
Showing 1-10 of 10 results.