A005773 Number of directed animals of size n (or directed n-ominoes in standard position).
1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, 143365, 414584, 1201917, 3492117, 10165779, 29643870, 86574831, 253188111, 741365049, 2173243128, 6377181825, 18730782252, 55062586341, 161995031226, 476941691177, 1405155255055, 4142457992363
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 96*x^6 + 267*x^7 + ... a(3) = 5, a(4) = 13; since the top row of M^3 = (5, 5, 2, 1, ...) From _Eric Rowland_, Sep 25 2021: (Start) There are a(4) = 13 directed animals of size 4: O O O O OO O O O O OO O OO O OO OOO O O OO O O OO O O OO OOO O O OO OOO OO OOO OOOO (End) From _Joerg Arndt_, Nov 10 2012: (Start) There are a(4)=13 smooth factorial numbers of length 4 (dots for zeros): [ 1] [ . . . . ] [ 2] [ . . . 1 ] [ 3] [ . . 1 . ] [ 4] [ . . 1 1 ] [ 5] [ . . 1 2 ] [ 6] [ . 1 . . ] [ 7] [ . 1 . 1 ] [ 8] [ . 1 1 . ] [ 9] [ . 1 1 1 ] [10] [ . 1 1 2 ] [11] [ . 1 2 1 ] [12] [ . 1 2 2 ] [13] [ . 1 2 3 ] (End) From _Joerg Arndt_, Nov 22 2012: (Start) There are a(4)=13 base 3 4-digit numbers (not starting with 0) with digit sum 4: [ 1] [ 2 2 . . ] [ 2] [ 2 1 1 . ] [ 3] [ 1 2 1 . ] [ 4] [ 2 . 2 . ] [ 5] [ 1 1 2 . ] [ 6] [ 2 1 . 1 ] [ 7] [ 1 2 . 1 ] [ 8] [ 2 . 1 1 ] [ 9] [ 1 1 1 1 ] [10] [ 1 . 2 1 ] [11] [ 2 . . 2 ] [12] [ 1 1 . 2 ] [13] [ 1 . 1 2 ] (End)
References
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 237.
- T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications, CRC Press, 2013, p. 377.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.46a.
- R. P. Stanley, Catalan Numbers, Cambridge, 2015, p. 132.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Kassie Archer and Christina Graves, A new statistic on Dyck paths for counting 3-dimensional Catalan words, arXiv:2205.09686 [math.CO], 2022.
- Andrei Asinowski and Günter Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Andrei Asinowski, Axel Bacher, Cyril Banderier and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- Cyril Banderier and Paweł Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Disc. Appl. Math. 160 (18) (2012) 2542-2554.
- Cyril Banderier, Christian Krattenthaler, Alan Krinik, Dmitry Kruchinin, Vladimir Kruchinin, David Tuan Nguyen, and Michael Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
- Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani, From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
- Elena Barcucci, Antonio Bernini and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Jean-Luc Baril, David Bevan and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
- Jean-Luc Baril, Rigoberto Flórez, and José L. Ramírez, Counting symmetric and asymmetric peaks in motzkin paths with air pockets, Univ. Bourgogne (France, 2023).
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Forests and pattern-avoiding permutations modulo pure descents, Permutation Patterns 2017, Reykjavik University, Iceland, June 26-30, 2017.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Ange Bigeni and Evgeny Feigin, Poincaré polynomials of the degenerate flag varieties of type C, arXiv:1804.10804 [math.CO], 2018.
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- H. Bottomley, Illustration of initial terms
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106.
- Xiang-Ke Chang, Xing-Biao Hu, Hongchuan Lei and Yeong-Nan Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
- Hyunsoo Cho, JiSun Huh and Jaebum Sohn, Counting self-conjugate (s,s+1,s+2)-core partitions, arXiv:1904.02313 [math.CO], 2019.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Rodrigo De Castro, Andrés L. Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
- Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Patrick Dehornoy and Emilie Tesson, Garside combinatorics for Thompson's monoid F+ and a hybrid with the braid monoid B_oo+, arXiv:1803.02639 [math.GR], 2018.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- D. Dhar et al., Enumeration of directed site animals on two-dimensional lattices, J. Phys. A 15 (1982), L279-L284.
- Igor Dolinka, James East, Athanasios Evangelou, Desmond FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, and James Mitchell, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv:1507.04838 [math.CO], 2015.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From _N. J. A. Sloane_, May 01 2012
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 81.
- Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- D. Gouyou-Beauchamps and G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
- Taras Goy and Mark Shattuck, Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See p. 33.13.
- Tom Halverson and Mike Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011
- Vít Jelínek, Toufik Mansour, and Mark Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Theorem 4.2.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math. 101 (2018), 232-265.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76.
- Toufik Mansour and Mark Shattuck, Restricted partitions and generalized Catalan numbers, PU. M. A., Vol. (2011), No. 2, pp. 239-251. - From _N. J. A. Sloane_, Oct 13 2012
- Toufik Mansour and Mark Shattuck, Avoidance of vincular patterns by Catalan words, arXiv:2405.12435 [math.CO], 2024. See p. 4.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 3.
- Toufik Mansour, Mark Shattuck and David G. L. Wang, Counting subwords in flattened permutations, arXiv:1307.3637 [math.CO], 2013.
- Toufik Mansour, Mark Shattuck, and Stephen Wagner, Counting subwords in flattened permutations, Discrete Math., 338 (2015), pp. 1989-2005.
- Jan Němeček and Martin Klazar, A bijection between nonnegative words and sparse abba-free partitions, Discr. Math., 265 (2003), 411-416.
- Dmitri I. Panyushev, Ideals of Heisenberg type and minimax elements of affine Weyl groups, arXiv:math/0311347 [math.RT], Lie Groups and Invariant Theory, Amer. Math. Soc. Translations, Series 2, Volume 213, (2005), ed. E. Vinberg.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 8.
- Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, Constrained Codes that Mitigate Inter-Cell Interference in Read/Write Cycles for Flash Memories, IEEE Jnl. Selected Areas in Communications, 2014. See Eq. (1). - _N. J. A. Sloane_, Jul 16 2014
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv:1310.8635 [math.NT], 2013.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Mark Shattuck, Pattern Avoiding Set Partitions and Sequence A005773, Talk given at AMS Regional Meeting, Rutgers University, Nov 15 2015; Abstract 1115-05-211.
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 2.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
- Pascal O. Vontobel, Counting balanced sequences w/o forbidden patterns via the Bethe approximation and loop calculus, Information Theory (ISIT), 2014 IEEE International Symposium on, June 29 2014-July 4 2014 Page(s): 1608-1612.
- Sherry H. F. Yan, Yao Yu and Hao Zhou, On self-conjugate (s, s+1, .., s+k)-core partitions, arXiv:1905.00570 [math.CO], 2019.
- Daniel Yaqubi, Mohammad Farrokhi Derakhshandeh Ghouchan, and Hamed Ghasemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
Crossrefs
See also A005775. Inverse of A001006. Also sum of numbers in row n+1 of array T in A026300. Leading column of array in A038622.
The right edge of the triangle A062105.
Column k=3 of A295679.
Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A054391, A054392, A054393, A055898.
Except for the first term a(0), sequence is the binomial transform of A001405.
Programs
-
Haskell
a005773 n = a005773_list !! n a005773_list = 1 : f a001006_list [] where f (x:xs) ys = y : f xs (y : ys) where y = x + sum (zipWith (*) a001006_list ys) -- Reinhard Zumkeller, Mar 30 2012
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*x/(3*x-1+Sqrt(1-2*x-3*x^2)) )); // G. C. Greubel, Apr 05 2019 -
Maple
seq( sum(binomial(i-1, k)*binomial(i-k, k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 A005773:=proc(n::integer) local i, j, A, istart, iend, KartProd, Liste, Term, delta; A:=0; for i from 0 to n do Liste[i]:=NULL; istart[i]:=0; iend[i]:=n-i+1: for j from istart[i] to iend[i] do Liste[i]:=Liste[i], j; end do; Liste[i]:=[Liste[i]]: end do; KartProd:=cartprod([seq(Liste[i], i=1..n)]); while not KartProd[finished] do Term:=KartProd[nextvalue](); delta:=1; for i from 1 to n-1 do if (op(i, Term) - op(i+1, Term))^2 >= 2 then delta:=0; break; end if; end do; A:=A+delta; end do; end proc; # Thomas Wieder, Feb 22 2009: # n -> [a(0),a(1),..,a(n)] A005773_list := proc(n) local W, m, j, i; W := proc(i, j, n) option remember; if min(i, j, n) < 0 or max(i, j) > n then 0 elif n = 0 then if i = 0 and j = 0 then 1 else 0 fi else W(i-1,j,n-1)+W(i,j-1,n-1)+W(i+1,j-1,n-1) fi end: [1,seq(add(add(W(i,j,m),i=0..m),j=0..m),m=0..n-1)] end: A005773_list(27); # Peter Luschny, May 21 2011 A005773 := proc(n) option remember; if n <= 1 then 1 ; else 2*n*procname(n-1)+3*(n-2)*procname(n-2) ; %/n ; end if; end proc: seq(A005773(n),n=0..10) ; # R. J. Mathar, Jul 25 2017
-
Mathematica
CoefficientList[Series[(2x)/(3x-1+Sqrt[1-2x-3x^2]), {x,0,40}], x] (* Harvey P. Dale, Apr 03 2011 *) a[0]=1; a[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *) A005773[n_] := 2 (-1)^(n+1) JacobiP[n - 1, 3, -n -1/2, -7] / (n^2 + n); A005773[0] := 1; Table[A005773[n], {n, 0, 27}] (* Peter Luschny, May 25 2021 *)
-
PARI
a(n)=if(n<2,n>=0,(2*n*a(n-1)+3*(n-2)*a(n-2))/n)
-
PARI
for(n=0, 27, print1(if(n==0, 1, sum(k=0, n-1, (-1)^(n - 1 + k)*binomial(n - 1, k)*binomial(2*k + 1, k + 1))),", ")) \\ Indranil Ghosh, Mar 14 2017
-
PARI
Vec(1/(1-serreverse(x*(1-x)/(1-x^3) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
-
Sage
def da(): a, b, c, d, n = 0, 1, 1, -1, 1 yield 1 yield 1 while True: yield b + (-1)^n*d n += 1 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1)) c, d = d, (3*(n-1)*c-(2*n-1)*d)//n A005773 = da() print([next(A005773) for in range(28)]) # _Peter Luschny, May 16 2016
-
Sage
(2*x/(3*x-1+sqrt(1-2*x-3*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 05 2019
Formula
G.f.: 2*x/(3*x-1+sqrt(1-2*x-3*x^2)). - Len Smiley
Also a(0)=1, a(n) = Sum_{k=0..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).
D-finite with recurrence n*a(n) = 2*n*a(n-1) + 3*(n-2)*a(n-2), a(0)=a(1)=1. - Michael Somos, Feb 02 2002
G.f.: 1/2+(1/2)*((1+x)/(1-3*x))^(1/2). Related to Motzkin numbers A001006 by a(n+1) = 3*a(n) - A001006(n-1) [see Yaqubi Lemma 2.6].
a(n) = Sum_{q=0..n} binomial(q, floor(q/2))*binomial(n-1, q) for n > 0. - Emeric Deutsch, Aug 15 2002
From Paul Barry, Jun 22 2004: (Start)
a(n+1) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*C(2*k+1, k+1).
a(n) = 0^n + Sum_{k=0..n-1} (-1)^(n+k-1)*C(n-1, k)*C(2*k+1, k+1). (End)
a(n+1) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*A000108(k). - Paul Barry, Jan 27 2005
Starting (1, 2, 5, 13, ...) gives binomial transform of A001405 and inverse binomial transform of A001700. - Gary W. Adamson, Aug 31 2007
Starting (1, 2, 5, 13, 35, 96, ...) gives row sums of triangle A132814. - Gary W. Adamson, Aug 31 2007
G.f.: 1/(1-x/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Jan 19 2009
G.f.: 1+x/(1-2*x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-.... (continued fraction). - Paul Barry, Jan 19 2009
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any (l_i - l_(i+1))^2 >= 2 for i=1..n-1 and delta(l_1,l_2,..., l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
INVERT transform of offset Motzkin numbers (A001006): (a(n)){n>=1}=(1,1,2,4,9,21,...). - _David Callan, Aug 27 2009
A005773(n) = ((n+3)*A001006(n+1) + (n-3)*A001006(n)) * (n+2)/(18*n) for n > 0. - Mark van Hoeij, Jul 02 2010
a(n) = Sum_{k=1..n} (k/n * Sum_{j=0..n} binomial(n,j)*binomial(j,2*j-n-k)). - Vladimir Kruchinin, Sep 06 2010
a(0) = 1; a(n+1) = Sum_{t=0..n} n!/((n-t)!*ceiling(t/2)!*floor(t/2)!). - Andrew S. Hays, Feb 02 2011
a(n) = leftmost column term of M^n*V, where M = an infinite quadradiagonal matrix with all 1's in the main, super and subdiagonals, [1,0,0,0,...] in the diagonal starting at position (2,0); and rest zeros. V = vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
From Gary W. Adamson, Jul 29 2011: (Start)
a(n) = upper left term of M^n, a(n+1) = sum of top row terms of M^n; M = an infinite square production matrix in which the main diagonal is (1,1,0,0,0,...) as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, ...
1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 0, 1, ...
1, 1, 1, 1, 1, 0, ... (End)
Limit_{n->oo} a(n+1)/a(n) = 3.0 = lim_{n->oo} (1 + 2*cos(Pi/n)). - Gary W. Adamson, Feb 10 2012
a(n) = A025565(n+1) / 2 for n > 0. - Reinhard Zumkeller, Mar 30 2012
With first term deleted: E.g.f.: a(n) = n! * [x^n] exp(x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 25 2012
G.f.: G(0)/2 + 1/2, where G(k) = 1 + 2*x*(4*k+1)/( (2*k+1)*(1+x) - x*(1+x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
a(n) ~ 3^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Jul 30 2013
For n > 0, a(n) = (-1)^(n+1) * hypergeom([3/2, 1-n], [2], 4). - Vladimir Reshetnikov, Apr 25 2016
a(n) = GegenbauerC(n-2,-n+1,-1/2) + GegenbauerC(n-1,-n+1,-1/2) for n >= 1. - Peter Luschny, May 12 2016
0 = a(n)*(+9*a(n+1) + 18*a(n+2) - 9*a(n+3)) + a(n+1)*(-6*a(n+1) + 7*a(n+2) - 2*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for n >= 0. - Michael Somos, Dec 01 2016
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A001006. - Andrew Howroyd, Dec 04 2017
a(n) = (-1)^(n + 1)*2*JacobiP(n - 1, 3, -n - 1/2, -7)/(n^2 + n). - Peter Luschny, May 25 2021
a(n) = Sum_{k=0..n-1} A064189(n-1,k) for n >= 1. - Alois P. Heinz, Aug 29 2022
Comments