A006190 a(n) = 3*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, 467280, 1543321, 5097243, 16835050, 55602393, 183642229, 606529080, 2003229469, 6616217487, 21851881930, 72171863277, 238367471761, 787274278560, 2600190307441, 8587845200883, 28363725910090
Offset: 0
Examples
From _Enrique Navarrete_, Dec 15 2023: (Start) From the comment on compositions with Pell number of parts, A000129(k), there are A000129(1)=1 type of 1, A000129(2)=2 types of 2, A000129(3)=5 types of 3, A000129(4)=12 types of 4, A000129(5)=29 types of 5 and A000129(6)=70 types of 6. The following table gives the number of compositions of n=6: Composition, number of such compositions, number of compositions of this type: 6, 1, 70; 5+1, 2, 58; 4+2, 2, 48; 3+3, 1, 25; 4+1+1, 3, 36; 3+2+1, 6, 60; 2+2+2, 1, 8; 3+1+1+1, 4, 20; 2+2+1+1, 6, 24; 2+1+1+1+1, 5, 10; 1+1+1+1+1+1, 1, 1; for a total of a(6)=360 compositions of n=6. (End).
References
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 128.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- L.-N. Machaut, Query 3436, L'Intermédiaire des Mathématiciens, 16 (1909), 62-63. - N. J. A. Sloane, Mar 08 2022
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178. (Annotated scanned copy)
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
- Ayoub B. Ayoub, Fibonacci-like sequences and Pell equations, The College Mathematics Journal, Vol. 38 (2007), pp. 49-53.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 8, 29.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
- Henrique F. da Cruz, Ilda Inácio, and Rogério Serôdio, Convertible subspaces that arise from different numberings of the vertices of a graph, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 473-486.
- Colin Defant, Meeting Covered Elements in nu-Tamari Lattices, arXiv:2104.03890 [math.CO], 2021.
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- A. F. Horadam, Generating identities for generalized Fibonacci and Lucas triples, Fib. Quart., 15 (1977), 289-292.
- Haruo Hosoya, What Can Mathematical Chemistry Contribute to the Development of Mathematics?, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 158
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- Milan Janjić, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1976), 318-328.
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- S. Schuster, M. Fichtner and S. Sasso, Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids, Sci. Rep., 7 (2017) 39821.
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (3,1).
Crossrefs
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), this sequence (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).
Cf. A243399.
Programs
-
GAP
a:=[0,1];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
-
Haskell
a006190 n = a006190_list !! n a006190_list = 0 : 1 : zipWith (+) (map (* 3) $ tail a006190_list) a006190_list -- Reinhard Zumkeller, Feb 19 2011
-
Magma
[ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
a[0]:=0: a[1]:=1: for n from 2 to 35 do a[n]:= 3*a[n-1]+a[n-2] end do: seq(a[n],n=0..30); # Emeric Deutsch, Sep 03 2007 A006190:=-1/(-1+3*z+z**2); # Simon Plouffe in his 1992 dissertation, without the leading 0 seq(combinat[fibonacci](n,3),n=0..30); # R. J. Mathar, Dec 07 2011
-
Mathematica
a[n_] := (MatrixPower[{{1, 3}, {1, 2}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, -1, 24}] (* Robert G. Wilson v, Jan 13 2005 *) LinearRecurrence[{3,1},{0,1},30] (* or *) CoefficientList[Series[x/ (1-3x-x^2), {x,0,30}], x] (* Harvey P. Dale, Apr 20 2011 *) Table[If[n==0, a1=1; a0=0, a2=a1; a1=a0; a0=3*a1+a2], {n, 0, 30}] (* Jean-François Alcover, Apr 30 2013 *) Table[Fibonacci[n, 3], {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *)
-
PARI
a(n)=if(n<1,0,contfracpnqn(vector(n,i,2+(i>1)))[2,1])
-
PARI
a(n)=([1,3;1,2]^n)[2,1] \\ Charles R Greathouse IV, Mar 06 2014
-
PARI
concat([0],Vec(x/(1-3*x-x^2)+O(x^30))) \\ Joerg Arndt, Apr 30 2013
-
Sage
[lucas_number1(n,3,-1) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
Formula
G.f.: x/(1 - 3*x - x^2).
From Benoit Cloitre, Jun 14 2003: (Start)
From Gary W. Adamson, Jun 15 2003: (Start)
a(n-1) + a(n+1) = A006497(n).
A006497(n)^2 - 13*a(n)^2 = 4(-1)^n. (End)
a(n) = U(n-1, (3/2)i)(-i)^(n-1), i^2 = -1. - Paul Barry, Nov 19 2003
a(n) = Sum_{k=0..n-1} binomial(n-k-1,k)*3^(n-2*k-1). - Paul Barry, Oct 02 2004
a(n) = F(n, 3), the n-th Fibonacci polynomial evaluated at x=3.
Let M = {{0, 1}, {1, 3}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = Abs[v[n][[1]]]. - Roger L. Bagula, May 29 2005 [Or a(n) = [M^(n+1)]{1,1}. - _L. Edson Jeffery, Aug 27 2013]
From Paul Barry, May 21 2006: (Start)
a(n+1) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(k-j).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-j-k).
a(n+1) = Sum_{k=0..floor(n/2)} C(n-k,k)*3^(n-2*k).
a(n) = Sum_{k=0..n} C(k,n-k)*3^(2*k-n). (End)
E.g.f.: exp(3*x/2)*sinh(sqrt(13)*x/2)/(sqrt(13)/2). - Paul Barry, Jun 03 2006
a(n) = (ap^n - am^n)/(ap - am), with ap = (3 + sqrt(13))/2, am = (3 - sqrt(13))/2.
Let C = (3 + sqrt(13))/2 = exp arcsinh(3/2) = 3.3027756377... Then C^n, n > 0 = a(n)*(1/C) + a(n+1). Let X = the 2 X 2 matrix [0, 1; 1, 3]. Then X^n = [a(n-1), a(n); a(n), a(n+1)]. - Gary W. Adamson, Dec 21 2007
1/3 = 3/(1*10) + 3/(3*33) + 3/(10*109) + 3/(33*360) + 3/(109*1189) + ... . - Gary W. Adamson, Mar 16 2008
a(n) = ((3 + sqrt(13))^n - (3 - sqrt(13))^n)/(2^n*sqrt(13)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
a(p) == 13^((p-1)/2) mod p, for odd primes p. - Gary W. Adamson, Feb 22 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A006497(n) + a(n)*sqrt(13))/2.
Limit_{n->oo} A006497(n)/a(n) = sqrt(13). (End)
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (sqrt(13)-3)/2. - Vladimir Shevelev, Feb 23 2013
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (3*a(n) + sqrt(13*a(n)^2 + 4*(-1)^n))/2;
(2) a^2(n+1) - a(n)*a(n+2) = (-1)^n;
(3) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(4) a(n)/a(n+1) = (sqrt(13)-3)/2 + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
a(n) = sqrt(13*(A006497(n))^2 + (-1)^(n-1)*52)/13. - Vladimir Shevelev, Mar 13 2013
Sum_{n >= 1} 1/( a(2*n) + 1/a(2*n) ) = 1/3; Sum_{n >= 1} 1/( a(2*n + 1) - 1/a(2*n + 1) ) = 1/9. - Peter Bala, Mar 26 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 3*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 3*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(2*n) = a(n)*(3*a(n) + 2*a(n-1));
(7) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(8) a(n) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = ap^(2*k-1) + am^(2*k-1), with ap = (3 + sqrt(13))/2, am = (3 - sqrt(13))/2;
(9) 131|Sum_{k=n..n+9} a(k), for all positive n. (End)
From Kai Wang, Feb 10 2020: (Start)
a(n)^2 - a(n+r)*a(n-r) = (-1)^(n-r)*a(r)^2 - Catalan's identity.
arctan(1/a(2n)) - arctan(1/a(2n+2)) = arctan(a(2)/a(2n+1)).
arctan(1/a(2n)) = Sum_{m>=n} arctan(a(2)/a(2m+1)).
The same formula holds for Fibonacci numbers and Pell numbers. (End)
a(n+2) = 3^(n+1) + Sum_{k=0..n} a(k)*3^(n-k). - Greg Dresden and Gavron Campbell, Feb 22 2022
G.f. = 1/(1-Sum_{k>=1} P(k)*x^k), P(k)=A000129(k) (with a(0)=1). - Enrique Navarrete, Dec 17 2023
G.f.: x/(1 - 3*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 3 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
Sum_{n>=0} a(n)/phi^(3*n) = 1, where phi = A001622 is the golden ratio. - Diego Rattaggi, Apr 07 2025
Extensions
Second formula corrected by Johannes W. Meijer, Jun 02 2010
Comments