cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A087799 a(n) = 10*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 10.

Original entry on oeis.org

2, 10, 98, 970, 9602, 95050, 940898, 9313930, 92198402, 912670090, 9034502498, 89432354890, 885289046402, 8763458109130, 86749292044898, 858729462339850, 8500545331353602, 84146723851196170, 832966693180608098, 8245520207954884810
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003

Keywords

Comments

a(n+1)/a(n) converges to (5+sqrt(24)) = 9.8989794... a(0)/a(1)=2/10; a(1)/a(2)=10/98; a(2)/a(3)=98/970; a(3)/a(4)=970/9602; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.10102051... = 1/(5+sqrt(24)) = (5-sqrt(24)).
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 96 = 0. - Colin Barker, Feb 25 2014
A triangle whose sides are a(n) - 1, a(n) and a(n) + 1 is nearly Fleenor-Heronian since its area is the product of an integer and the square root of 2. See A003500. - Charlie Marion, Dec 18 2020

Examples

			a(4) = 9602 = 10*a(3) - a(2) = 10*970 - 98 = (5+sqrt(24))^4 + (5-sqrt(24))^4.
		

Crossrefs

Programs

  • Magma
    I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    a[0] = 2; a[1] = 10; a[n_] := 10a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{10,-1}, {2,10}, 30] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    polsym(x^2 - 10*x + 1,20) \\ Charles R Greathouse IV, Jun 11 2011
    
  • PARI
    {a(n) = 2 * real( (5 + 2 * quadgen(24))^n )}; /* Michael Somos, Feb 25 2014 */
    
  • Sage
    [lucas_number2(n,10,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = (5+sqrt(24))^n + (5-sqrt(24))^n.
G.f.: (2-10*x)/(1-10*x+x^2). - Philippe Deléham, Nov 02 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 5 - sqrt(24). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.09989 80642 72052 68138 ... = 2 + 1/(10 + 1/(98 + 1/(970 + ...))).
Also F(-alpha) = 0.89989 78538 78393 34715 ... has the continued fraction representation 1 - 1/(10 - 1/(98 - 1/(970 - ...))) and the simple continued fraction expansion 1/(1 + 1/((10-2) + 1/(1 + 1/((98-2) + 1/(1 + 1/((970-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((10^2-4) + 1/(1 + 1/((98^2-4) + 1/(1 + 1/((970^2-4) + 1/(1 + ...))))))). Cf. A174503 and A005248. (End)
a(-n) = a(n). - Michael Somos, Feb 25 2014
From Peter Bala, Oct 16 2019: (Start)
8*Sum_{n >= 1} 1/(a(n) - 12/a(n)) = 1.
12*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 8/a(n)) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/8 - 12*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 12)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/12 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 8)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(5-sqrt(24)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(sqrt(24)-5))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499. (End)
E.g.f.: 2*exp(5*x)*cosh(2*sqrt(6)*x). - Stefano Spezia, Oct 18 2019
From Peter Bala, Mar 29 2022: (Start)
a(n) = 2*T(n,5), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(2^n) = A135927(n+1) and a(3^n) = A006242(n+1), both for n >= 0. (End)

Extensions

More terms from Colin Barker, Feb 25 2014

A006243 Extracting a square root.

Original entry on oeis.org

198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 1

Views

Author

Keywords

References

  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006242, A112845 (differs only for the initial 6).

Programs

  • Magma
    [n eq 1 select 198 else Self(n-1)^3-3*Self(n-1): n in [1..5]]; // Vincenzo Librandi, Feb 09 2017
  • Mathematica
    RecurrenceTable[{a[1]==198, a[n]==a[n-1]^3 - 3 a[n-1]}, a, {n, 8}] (* Vincenzo Librandi, Feb 09 2017 *)

Formula

a(1) = 198, a(n) = a(n-1)^3 - 3*a(n-1). - Sean A. Irvine, Feb 08 2017
a(n) = (99 + 70*sqrt(2))^(3^(n-1)) + (99 - 70*sqrt(2))^(3^(n-1)). - Bruno Berselli, Feb 10 2017

Extensions

Offset changed by Sean A. Irvine, Feb 08 2017

A018844 Arises from generalized Lucas-Lehmer test for primality.

Original entry on oeis.org

4, 10, 52, 724, 970, 10084, 95050, 140452, 1956244, 9313930, 27246964, 379501252, 912670090, 5285770564, 73621286644, 89432354890, 1025412242452, 8763458109130, 14282150107684, 198924689265124
Offset: 1

Views

Author

Keywords

Comments

Apparently this was suggested by an article by R. M. Robinson.
Starting values for Lucas-Lehmer test that result in a zero term (mod Mersenne prime Mp) after P-1 steps. - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004
m belongs to the sequence iff m-2 is twice a square and m+2 is either three or six times a square. - René Gy, Jan 10 2019
A006242 is a subsequence. - Davide Rotondo, Oct 21 2024

Crossrefs

Programs

  • PARI
    listUpTo(n)=a=List([4,52]);while(1,m=14*a[#a]-a[#a-1];m>n&&break();listput(a,m));b=List([10,970]);while(1,m=98*b[#b]-b[#b-1];m>n&&break();listput(b,m));setunion(Set(a),Set(b)) \\ Jeppe Stig Nielsen, Aug 03 2020

Formula

Union of sequences a_1=4, a_2=52, a_{n}=14*a_{n-1} - a_{n-2} and b_1=10, b_2=970, b_{n}=98*b_{n-1} - b_{n-2}.
a[1]=14 (mod Mp), a[2]=52 (mod Mp), a[n]=(14*a[n-1]-a[n-2]) (mod Mp). - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004
Though originally noted as the union of two sequences, when the first sequence (14*a[n-1]-a[n-2]) is evaluated modulo a Mersenne prime, the terms of the second sequence (98*b[n-1]-b[n-2]) will occur naturally (just not in numerical order). - Jason Follas (jfollas_mersenne(AT)hotmail.com), Aug 01 2004
a(n) = sqrt(A206257(n) + 2). - Arkadiusz Wesolowski, Feb 08 2012

A282180 a(n+1) = a(n)*(a(n)^2 - 3) with a(0) = 8.

Original entry on oeis.org

8, 488, 116212808, 1569502402942700328379688, 3866214585126515728777536857817155683642224883875510905654220958052649608
Offset: 0

Views

Author

Vincenzo Librandi, Feb 10 2017

Keywords

Crossrefs

Cf. similar sequences with initial value k: A001999 (k=3), A219160 (k=4), A219161 (k=5), A112845 (k=6), A002000 (k=7), this sequence (k=8), A282181 (k=9), A006242 (k=10), A006243 (k=198).

Programs

  • Magma
    [n eq 1 select 8 else Self(n-1)^3 - 3*Self(n-1): n in [1..6]];
  • Mathematica
    RecurrenceTable[{a[0] == 8, a[n] == a[n-1]^3 - 3 a[n-1]}, a, {n, 8}]

Formula

a(n) = (4 + sqrt(15))^(3^n) + (4 - sqrt(15))^(3^n). - Bruno Berselli, Feb 10 2017
a(n) = -2*cos(3^n * arccos(-4)). - Daniel Suteu, Feb 10 2017
Showing 1-4 of 4 results.