A007070 a(n) = 4*a(n-1) - 2*a(n-2) with a(0) = 1, a(1) = 4.
1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, 3028544, 10340096, 35303296, 120532992, 411525376, 1405035520, 4797091328, 16378294272, 55918994432, 190919389184, 651839567872, 2225519493120, 7598398836736, 25942556360704, 88573427769344, 302408598355968
Offset: 0
Examples
a(3) = 48 = 3 * 4 + 4 + 1 + 1 = 3*a(2) + a(1) + a(0) + 1. Example for the octagon rho(8) powers: rho(8)^4 = 2 + sqrt(2) = -2*1 + 4*rho(8)^2 = A(5)*1 + A(4)*rho(8) + B(5)*rho(8)^2 + B(4)*rho(8)^3, with a(5) = A106731(1) = -2, B(5) = a(1) = 4, A(4) = 0, B(4) = 0. - _Wolfdieter Lang_, Oct 01 2013
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- A. Bernini, F. Disanto, R. Pinzani, and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7.
- A. Burstein, S. Kitaev, and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. (See Cor. 3.7(e).)
- Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea 11 (2016) 255-276.
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- L. Escobar, P. Gallardo, J. González-Anaya, J. L. González, G. Montúfar, and A. H. Morales, Enumeration of max-pooling responses with generalized permutohedra, arXiv:2209.14978 [math.CO], 2022. (See Ex. 5.1)
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
- A. S. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discr. Math. 126 (1-3) (1994) 137-149.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 8.
- Sela Fried, Toufik Mansour, and Mark Shattuck, Counting k-ary words by number of adjacency differences of a prescribed size, arXiv:2504.03013 [math.CO], 2025. See p. 7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 440
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Index entries for sequences related to poker
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Crossrefs
Programs
-
Haskell
a007070 n = a007070_list !! n a007070_list = 1 : 4 : (map (* 2) $ zipWith (-) (tail $ map (* 2) a007070_list) a007070_list) -- Reinhard Zumkeller, Jan 16 2012
-
Magma
Z
:=PolynomialRing(Integers()); N :=NumberField(x^2-8); S:=[ ((4+r)^(1+n)-(4-r)^(1+n))/((2^(1+n))*r): n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Vincenzo Librandi, Mar 27 2011 -
Magma
[n le 2 select 3*n-2 else 4*Self(n-1)-2*Self(n-2): n in [1..23]]; // Bruno Berselli, Mar 28 2011
-
Maple
A007070 :=proc(n) option remember; if n=0 then 1 elif n=1 then 4 else 4*procname(n-1)-2*procname(n-2); fi; end: seq(A007070(n), n=0..30); # Wesley Ivan Hurt, Dec 06 2015
-
Mathematica
LinearRecurrence[{4,-2}, {1,4}, 30] (* Harvey P. Dale, Sep 16 2014 *)
-
PARI
a(n)=polcoeff(1/(1-4*x+2*x^2)+x*O(x^n),n)
-
PARI
a(n)=if(n<1,1,ceil((2+sqrt(2))*a(n-1)))
-
Sage
[lucas_number1(n,4,2) for n in range(1, 24)]# Zerinvary Lajos, Apr 22 2009
Formula
G.f.: 1/(1 - 4*x + 2*x^2).
Preceded by 0, this is the binomial transform of the Pell numbers A000129. Its e.g.f. is then exp(2*x)*sinh(sqrt(2)*x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = ((2+sqrt(2))^(n+1) - (2-sqrt(2))^(n+1))/sqrt(8). - Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008, corrected Mar 28 2011
a(n) = (2 - sqrt(2))^n*(1/2 - sqrt(2)/2) + (2 + sqrt(2))^n*(1/2 + sqrt(2)/2). - Paul Barry, May 09 2003
a(n) = ceiling((2 + sqrt(2))*a(n-1)). - Benoit Cloitre, Aug 15 2003
a(n) = U(n, sqrt(2))*sqrt(2)^n. - Paul Barry, Nov 19 2003
a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)*sin(r*Pi/2)*(2*cos(r*Pi/8))^(2*n+3). - Herbert Kociemba, Jun 11 2004
a(n) = center term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [A007052(n) a(n) A007052(n)]. E.g., a(3) = 48 since M^3 * [1 1 1] = [34 48 34], where 34 = A007052(3). - Gary W. Adamson, Dec 18 2004
This is the binomial mean transform of A002307. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(2n) = Sum_{r=0..n} 2^(2n-1-r)*(4*binomial(2n-1,2r) + 3*binomial(2n-1,2r+1)) a(2n-1) = Sum_{r=0..n} 2^(2n-2-r)*(4*binomial(2n-2,2r) + 3*binomial(2n-2,2r+1)). - Jeffrey Liese, Oct 12 2006
a(n) = 3*a(n - 1) + a(n - 2) + a(n - 3) + ... + a(0) + 1. - Gary W. Adamson, Feb 18 2011
G.f.: 1/(1 - 4*x + 2*x^2) = 1/( x*(1 + U(0)) ) - 1/x where U(k)= 1 - 2^k/(1 - x/(x - 2^k/U(k+1) )); (continued fraction 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 05 2012
G.f.: A(x) = G(0)/(1-2*x) where G(k) = 1 + 2*x/(1 - 2*x - x*(1-2*x)/(x + (1-2*x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 04 2013
G.f.: G(0)/(2*x) - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n-1) = Sum_{k=0..n} binomial(2*n, n+k)*(k|8) where (k|8) is the Kronecker symbol. - Greg Dresden, Oct 11 2022
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, May 20 2024
Comments