A007226 a(n) = 2*det(M(n; -1))/det(M(n; 0)), where M(n; m) is the n X n matrix with (i,j)-th element equal to 1/binomial(n + i + j + m, n).
2, 3, 10, 42, 198, 1001, 5304, 29070, 163438, 937365, 5462730, 32256120, 192565800, 1160346492, 7048030544, 43108428198, 265276342782, 1641229898525, 10202773534590, 63698396932170, 399223286267190, 2510857763851185, 15842014607109600
Offset: 0
References
- Guy Bégin, On the enumeration of perforation patterns for punctured convolutional codes, Séries Formelles et Combinatoire Algébrique, 4th colloquium, 15-19 Juin 1992, Montréal, Université du Québec à Montréal, pp. 1-10.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..198
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Guy Bégin and David Haccoun, High rate punctured convolutions codes: Structure properties and construction techniques, IEEE Transactions on Communications 37(12) (1989), 1381-1385.
- Ryan C. Chen, Yujin H. Kim, Jared D. Lichtman, Steven J. Miller, Shannon Sweitzer, and Eric Winsor, Spectral Statistics of Non-Hermitian Random Matrix Ensembles, arXiv:1803.08127 [math-ph], 2018.
- Fabio Deelan Cunden, Marilena Ligabò, and Tommaso Monni, Random matrices associated to Young diagrams, arXiv:2301.13555 [math.PR], 2023. See p. 7.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, 339(3) (2016), 1116-1139.
- I. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005.
- N. S. S. Gu, H. Prodinger, and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010), 720-732, Theorem 2 at k = 2.
- David Haccoun and Guy Bégin, High rate punctured convolutional codes for Viterbi and sequential coding, IEEE Transactions on Communications, 37(11) (1989), 1113-1125; see Section II.
- W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, arXiv:1304.6544 [math.PR], 2013.
- Jocelyn Quaintance, Combinatoric Enumeration of Two-Dimensional Proper Arrays, Discrete Math., 307 (2007), 1844-1864.
Programs
-
Magma
[Binomial(3*n,n)/(2*n+1)+Binomial(3*n+1,n)/(n+1): n in [0..25]]; // Vincenzo Librandi, Aug 10 2014
-
Maple
A007226:=n->2*binomial(3*n,n)-binomial(3*n,n+1): seq(A007226(n), n=0..30); # Wesley Ivan Hurt, Aug 11 2014
-
Mathematica
Table[2*Binomial[3n,n]-Binomial[3n,n+1], {n,0,20}] (* Harvey P. Dale, Aug 10 2014 *)
-
PARI
a(n) = {my(M1=matrix(n,n)); my(M0=matrix(n,n)); for(i=1, n, for(j=1, n, M1[i,j] = 1/binomial(n+i+j-1,n); M0[i,j] = 1/binomial(n+i+j,n);)); 2*matdet(M1)/matdet(M0);} \\ Petros Hadjicostas, Jul 27 2020
Formula
a(n) = (2/(n + 1))*binomial(3*n, n).
a(n) = (2n+1) * A000139(n). - F. Chapoton, Feb 23 2024
a(n) = 2*C(3*n, n) - C(3*n, n+1) for n >= 0. - David Callan, Oct 25 2004
a(n) = C(3*n, n)/(2*n + 1) + C(3*n + 1, n)/(n + 1) = C(3*n, n)/(2*n + 1) + 2*C(3*n + 1, n)/(2*n + 2) for n >= 0. - Paul Barry, Nov 05 2006
G.f.: g*(2 - g)/x, where g*(1 - g)^2 = x. - Mark van Hoeij, Nov 08 2011 [Thus, g = (4/3)*sin((1/3)*arcsin(sqrt(27*x/4)))^2. - Petros Hadjicostas, Jul 27 2020]
Recurrence: 2*(n+1)*(2*n-1)*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0 for n >= 1. - R. J. Mathar, Nov 26 2012
G.f.: (1 - 1/B(x))/x, where B(x) is the g.f. of A006013. [Vladimir Kruchinin, Mar 05 2013]
G.f.: ( -16 * sin(asin((3^(3/2) * sqrt(x))/2)/3)^4 + 24 * sin(asin((3^(3/2) * sqrt(x))/2)/3)^2 ) / (9*x). [Vladimir Kruchinin, Nov 16 2013]
From Petros Hadjicostas, Jul 27 2020: (Start)
The number of perforation patterns to derive high-rate convolutional code (v,b) (written as R = b/v) from a given low-rate convolutional code (v0, 1) (written as R = 1/v0) is (1/b)*Sum_{k|gcd(v,b)} phi(k)*binomial(v0*b/k, v/k).
According to Pab Ter's Maple code in the related sequences (see above), this is the coefficient of z^v in the polynomial (1/b)*Sum_{k|b} phi(k)*(1 + z^k)^(v0*b/k).
Here (v,b) = (n+1,n) and (v0,1) = (3,1), so for n >= 1,
a(n) = (1/n)*Sum_{k|gcd(n+1,n)} phi(k)*binomial(3*n/k, (n+1)/k).
This simplifies to
a(n) = (1/n)*binomial(3*n, n+1) for n >= 1. (End)
G.f.: (-(p+r)*(4*r-12*p)^(1/3)+(p-r)*(4*r+12*p)^(1/3)+8)/(12*z), where p = i*sqrt(3*z), r = sqrt(4-27*z), and i = sqrt(-1) is the imaginary unit. - Karol A. Penson, Mar 20 2025
Extensions
Edited following a suggestion of Ralf Stephan, Feb 07 2004
Offset changed to 0 and all formulas checked by Petros Hadjicostas, Jul 27 2020
Comments