cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007410 Numerator of Sum_{k=1..4} k^(-4).

Original entry on oeis.org

1, 17, 1393, 22369, 14001361, 14011361, 33654237761, 538589354801, 43631884298881, 43635917056897, 638913789210188977, 638942263173398977, 18249420414596570742097, 18249859383918836502097, 18250192489014819937873
Offset: 1

Views

Author

Keywords

Comments

p divides a(p-1) for prime p > 5. p divides a((p-1)/2) for prime p > 5. p^2 divides a((p-1)/2) for prime p = 31, 37. - Alexander Adamchuk, Jul 07 2006
p^2 divides a(p-1) for prime p = 37. - Alexander Adamchuk, Nov 07 2006
Denominators are A007480. See the W. Lang link under A103345 for the rationals and more.
The limit of the rationals Zeta(n) := Sum_{k=1..n} 1/k^4 as n -> infinity is (Pi^4)/90, which is approximately 1.082323234. See A013662.

References

  • D. Y. Savio, E. A. Lamagna, and S.-M. Liu, Summation of harmonic numbers, pp. 12-20, in: E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Numerators of the coefficients in the expansion of PolyLog(4, x)/(1 - x). - Ilya Gutkovskiy, Apr 10 2017

A103345 Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).

Original entry on oeis.org

1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

For the rationals Zeta(k,n) for k = 1..10 and n = 1..20, see the W. Lang link.
a(n) gives the partial sum, Zeta(6,n), of Euler's (later Riemann's) Zeta(6). Zeta(k,n), k >= 2, is sometimes also called H(k,n) because for k = 1 these would be the harmonic numbers A001008/A002805. However, H(1,n) does not give partial sums of a convergent series.

Examples

			The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
		

Crossrefs

Cf. A013664, A291456. For the denominators, see A103346.

Programs

Formula

a(n) = numerator(Sum_{k=1..n} 1/k^6) = numerator(A291456(n)/(n!)^6).
G.f. for rationals Zeta(6, n): polylogarithm(6, x)/(1-x).
Zeta(6, n) = (1/945)*Pi^6 - psi(5, n+1)/5!, see eq. 6.4.3 with m = 5, p. 260, of the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 03 2013

A069052 Denominator of Sum_{i = 1..n} 1/i^5.

Original entry on oeis.org

1, 32, 7776, 248832, 777600000, 259200000, 4356374400000, 139403980800000, 101625502003200000, 101625502003200000, 16366888723117363200000, 16366888723117363200000, 6076911214672415134617600000
Offset: 1

Views

Author

Benoit Cloitre, Apr 03 2002

Keywords

Comments

If 1 <= n <= 19, a(n) = A007480(n) * A002805(n) = denominator(Sum_{i = 1..n} 1/i^4) * denominator(Sum_{i = 1..n} 1/i).

Examples

			The first few fractions are 1, 33/32, 8051/7776, 257875/248832, ... = A099828/A069052. - _Petros Hadjicostas_, May 10 2020
		

Crossrefs

Numerators are A099828.

Programs

Formula

a(n) = denominator(Sum_{k=1..n} 1/k^5) = denominator(A099827(n)/(n!)^5). - Petros Hadjicostas, May 10 2020

A103347 Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).

Original entry on oeis.org

1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(7,n), of Euler's Zeta(7). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103348 and for the rationals Zeta(7,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^7).
G.f. for rationals Zeta(7, n): polylogarithm(7, x)/(1-x).

A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).

Original entry on oeis.org

1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(8,n) of Euler's Zeta(8). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103350 and for the rationals Zeta(8,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n)=numerator(sum_{k=1..n} 1/k^8).
G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x).

A103351 Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).

Original entry on oeis.org

1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(9,n), of Euler's Zeta(9). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103352 and for the rationals Zeta(9,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^9).
G.f. for rationals Zeta(9, n): polylogarithm(9, x)/(1-x).

A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).

Original entry on oeis.org

1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.
For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^10).
G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).

A130416 Numerator of partial sums for a series of (17/18)*Zeta(4) = (17/1680)*Pi^4.

Original entry on oeis.org

1, 49, 6623, 741857, 13247611, 3060203141, 13645449045719, 218327192834879, 100212182125865461, 1904031462407822767, 2534265876944902342877, 58288115171766608401171, 128058989033214718801833487
Offset: 1

Views

Author

Wolfdieter Lang, Jul 13 2007

Keywords

Comments

Denominators are given by A130417.
The rationals r(n) = 2*Sum_{k=1..n} 1/(k^4*binomial(2*k,k)) tend, in the limit n->infinity, to (18/17)*Zeta(4) = (17/1680)*Pi^4, approximately 1.022194166.

Examples

			Rationals: 1, 49/48, 6623/6480, 741857/725760, 13247611/12960000, ...
		

References

  • L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.

Crossrefs

Partial sums for Zeta(4): A007410/A007480.

Formula

a(n) = numerator(r(n)), n >= 1, with the rationals defined above.

A072914 Denominators of 1/4!*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers.

Original entry on oeis.org

1, 16, 1296, 20736, 12960000, 12960000, 31116960000, 497871360000, 40327580160000, 40327580160000, 590436101122560000, 590436101122560000, 16863445484161436160000, 16863445484161436160000
Offset: 1

Views

Author

Vladeta Jovovic, Aug 10 2002

Keywords

Comments

a(n) = A007480 (n) for n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 51, 52, 53, 54, 110, 111, 112, 113, 114, 115, 116...... - Benoit Cloitre, Aug 13 2002

Crossrefs

Cf. A072913.

Programs

  • PARI
    x(n)=sum(k=1,n,1/k); y(n)=sum(k=1,n,1/k^2); z(n)=sum(k=1,n,1/k^3); w(n)=sum(k=1,n,1/k^4); a(n)=denominator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))

Formula

Denominators of 1/4!*((gamma+Psi(n+1))^4+6*(gamma+Psi(n+1))^2*(1/6*Pi^2-Psi(1, n+1))+8*(gamma+Psi(n+1))*(Zeta(3)+1/2*Psi(2, n+1))+3*(1/6*Pi^2-Psi(1, n+1))^2+6*(1/90*Pi^4-1/6*Psi(3, n+1))).

Extensions

More terms from Benoit Cloitre, Aug 13 2002

A322266 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,       1,          1,              1,                  1,  ...
  2,     3/2,        5/4,            9/8,              17/16,  ...
  3,    11/6,      49/36,        251/216,          1393/1296,  ...
  4,   25/12,    205/144,      2035/1728,        22369/20736,  ...
  5,  137/60,  5269/3600,  256103/216000,  14001361/12960000,  ...
		

Crossrefs

Numerators are in A322265.

Programs

  • Mathematica
    Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten

Formula

G.f. of column k: PolyLog(k,x)/(1 - x), where PolyLog() is the polylogarithm function (for rationals Sum_{j=1..n} 1/j^k).
Showing 1-10 of 11 results. Next