A007410
Numerator of Sum_{k=1..4} k^(-4).
Original entry on oeis.org
1, 17, 1393, 22369, 14001361, 14011361, 33654237761, 538589354801, 43631884298881, 43635917056897, 638913789210188977, 638942263173398977, 18249420414596570742097, 18249859383918836502097, 18250192489014819937873
Offset: 1
- D. Y. Savio, E. A. Lamagna, and S.-M. Liu, Summation of harmonic numbers, pp. 12-20, in: E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Numerator[Table[Sum[1/k^4,{k,1,n}],{n,1,20}]] (* Alexander Adamchuk, Jul 07 2006 *)
Accumulate[1/Range[20]^4]//Numerator (* Harvey P. Dale, Jun 28 2020 *)
-
a(n)=numerator(sum(k=1,n,1/k^4)) \\ Charles R Greathouse IV, Jul 19 2011
A103345
Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n).
Original entry on oeis.org
1, 65, 47449, 3037465, 47463376609, 47464376609, 5584183099672241, 357389058474664049, 260537105518334091721, 52107472322919827957, 92311616995117182948130877, 92311647383100199924330877, 445570781131605573859221176881493, 445570839299219762020391212081493
Offset: 1
The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020
A069052
Denominator of Sum_{i = 1..n} 1/i^5.
Original entry on oeis.org
1, 32, 7776, 248832, 777600000, 259200000, 4356374400000, 139403980800000, 101625502003200000, 101625502003200000, 16366888723117363200000, 16366888723117363200000, 6076911214672415134617600000
Offset: 1
The first few fractions are 1, 33/32, 8051/7776, 257875/248832, ... = A099828/A069052. - _Petros Hadjicostas_, May 10 2020
A103347
Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).
Original entry on oeis.org
1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1
-
f:= n -> numer(Psi(6,n+1)/720 + Zeta(7)):
map(f, [$1..20]); # Robert Israel, Mar 28 2018
-
s=0;lst={};Do[s+=n^1/n^8;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 7] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 04 2013 *)
A103349
Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).
Original entry on oeis.org
1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1
-
s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Accumulate[1/Range[10]^8]//Numerator (* Harvey P. Dale, Aug 11 2024 *)
A103351
Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).
Original entry on oeis.org
1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1
A103716
Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
Original entry on oeis.org
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1
A130416
Numerator of partial sums for a series of (17/18)*Zeta(4) = (17/1680)*Pi^4.
Original entry on oeis.org
1, 49, 6623, 741857, 13247611, 3060203141, 13645449045719, 218327192834879, 100212182125865461, 1904031462407822767, 2534265876944902342877, 58288115171766608401171, 128058989033214718801833487
Offset: 1
Rationals: 1, 49/48, 6623/6480, 741857/725760, 13247611/12960000, ...
- L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.
A072914
Denominators of 1/4!*(H(n,1)^4+6*H(n,1)^2*H(n,2)+8*H(n,1)*H(n,3)+3*H(n,2)^2+6*H(n,4)), where H(n,m) = Sum_{i=1..n} 1/i^m are generalized harmonic numbers.
Original entry on oeis.org
1, 16, 1296, 20736, 12960000, 12960000, 31116960000, 497871360000, 40327580160000, 40327580160000, 590436101122560000, 590436101122560000, 16863445484161436160000, 16863445484161436160000
Offset: 1
-
x(n)=sum(k=1,n,1/k); y(n)=sum(k=1,n,1/k^2); z(n)=sum(k=1,n,1/k^3); w(n)=sum(k=1,n,1/k^4); a(n)=denominator(1/4!*(x(n)^4+6*x(n)^2*y(n)+8*x(n)*z(n)+3*y(n)^2+6*w(n)))
A322266
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
2, 3/2, 5/4, 9/8, 17/16, ...
3, 11/6, 49/36, 251/216, 1393/1296, ...
4, 25/12, 205/144, 2035/1728, 22369/20736, ...
5, 137/60, 5269/3600, 256103/216000, 14001361/12960000, ...
Columns k=0..10 give
A000012,
A002805,
A007407,
A007409,
A007480,
A069052,
A103346,
A103348,
A103350,
A103352,
A103717.
-
Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Showing 1-10 of 11 results.
Comments