A047656
a(n) = 3^((n^2-n)/2).
Original entry on oeis.org
1, 1, 3, 27, 729, 59049, 14348907, 10460353203, 22876792454961, 150094635296999121, 2954312706550833698643, 174449211009120179071170507, 30903154382632612361920641803529, 16423203268260658146231467800709255289, 26183890704263137277674192438430182020124347
Offset: 0
The a(2)=3 binary 2 X 2 matrices are [0 0; 0 0], [0 1; 0 0], and [0 0; 1 0]. - _Dennis P. Walsh_, Apr 03 2014
- P. A. MacMahon, Chess tournaments and the like treated by the calculus of symmetric functions, Coll. Papers I, MIT Press, 344-375.
- Vincenzo Librandi, Table of n, a(n) for n = 0..65
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- T. R. Hoffman and J. P. Solazzo, Complex Two-Graphs via Equiangular Tight Frames, arXiv preprint arXiv:1408.0334 [math.CO], 2014.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Eric Weisstein's World of Mathematics, (-1,0,1)-Matrix
- Eric Weisstein's World of Mathematics, Symmetric Matrix
- Index entries for sequences related to tournaments
-
seq(3^binomial(n, 2), n=0..12); # Zerinvary Lajos, Jun 16 2007
seq(3^((n^2-n)/2), n=0..14);
-
Table[3^((n^2 - n)/2), {n, 0, 14}] (* Eric W. Weisstein, Jan 03 2021 *)
3^Table[Binomial[n, 2], {n, 0, 14}] (* Eric W. Weisstein, Jan 03 2021 *)
3^Binomial[Range[0, 14], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Table[Count[Tuples[{-1, 0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 3}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
a(n)=3^binomial(n+1,2) \\ Charles R Greathouse IV, Apr 17 2012
A000571
Number of different score sequences that are possible in an n-team round-robin tournament.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 167, 490, 1486, 4639, 14805, 48107, 158808, 531469, 1799659, 6157068, 21258104, 73996100, 259451116, 915695102, 3251073303, 11605141649, 41631194766, 150021775417, 542875459724, 1972050156181, 7189259574618, 26295934251565, 96478910768821, 354998461378719, 1309755903513481
Offset: 0
a(3)=2, since either one node dominates [ 2,1,0 ] or each node defeats the next [ 1,1,1 ].
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 22*x^6 + 59*x^7 + 167*x^8 +...
where the logarithm begins:
log(A(x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 26*x^5/5 + 76*x^6/6 +...+ A145855(n)*x^n/n +...
From _Joerg Arndt_, Mar 29 2014: (Start)
The a(6) = 22 score sequences of length 6 are:
01: [ 0 1 2 3 4 5 ]
02: [ 0 1 2 4 4 4 ]
03: [ 0 1 3 3 3 5 ]
04: [ 0 1 3 3 4 4 ]
05: [ 0 2 2 2 4 5 ]
06: [ 0 2 2 3 3 5 ]
07: [ 0 2 2 3 4 4 ]
08: [ 0 2 3 3 3 4 ]
09: [ 0 3 3 3 3 3 ]
10: [ 1 1 1 3 4 5 ]
11: [ 1 1 1 4 4 4 ]
12: [ 1 1 2 2 4 5 ]
13: [ 1 1 2 3 3 5 ]
14: [ 1 1 2 3 4 4 ]
15: [ 1 1 3 3 3 4 ]
16: [ 1 2 2 2 3 5 ]
17: [ 1 2 2 2 4 4 ]
18: [ 1 2 2 3 3 4 ]
19: [ 1 2 3 3 3 3 ]
20: [ 2 2 2 2 2 5 ]
21: [ 2 2 2 2 3 4 ]
22: [ 2 2 2 3 3 3 ]
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 123, Problem 21.
- P. A. MacMahon, An American tournament treated by the calculus of symmetric functions, Quart. J. Pure Appl. Math., 49 (1920), 1-36. [Gives a(0)-a(8). - N. J. A. Sloane, Jun 11 2016] Reproduced in Percy Alexander MacMahon Collected Papers, Volume I, George E. Andrews, ed., MIT Press, 1978, 308-343.
- J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 68.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1675 (terms 0..100 from Sean A. Irvine)
- C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- Dale H. Bent, Score problems of round-robin tournaments, Master's dissertation, Univ. Alberta, 1964. See Table 5 on page 52.
- David E. Brown, Eric Culver, Bryce Frederickson, Sidney Tate, and Brent J. Thomas, Entropy of Tournament Digraphs, arXiv:1812.09458 [math.CO], 2018.
- Anders Claesson, Mark Dukes, Atli Fannar Franklín, and Sigurður Örn Stefánsson, Counting tournament score sequences, arXiv:2209.03925 [math.CO], 2022.
- Sebrina Ruth Cropper, Ranking Score Vectors of Tournaments (2011). All Graduate Reports and Creative Projects. Paper 91. Utah State University, School of Graduate Studies.
- Serte Donderwinkel and Brett Kolesnik, Tournaments and random walks, arXiv:2403.12940 [math.PR], 2024. See index, p. 34.
- Jeong Han Kim and Boris Pittel, Confirming the Kleitman-Winston Conjecture on the Largest Coefficient in a q-Catalan Number, J. Comb. Theory Series A 92 (2000), 197-206.
- P. A. MacMahon, An American tournament treated by the calculus of symmetric functions, Quart. J. Pure Appl. Math., 49 (1920), 1-36. Gives a(1) to a(9). [Annotated scanned copy, scanned at 300 dpi. Do not replace with a smaller file as the print is very tiny and hard to read.]
- Yaakov Malinovsky and John W. Moon, On Round-Robin Tournaments with a Unique Maximum Score and Some Related Results, arXiv:2208.14932 [math.CO], 2022.
- John W. Moon, Topics on tournaments, Holt, Rinehard and Winston (1968), see page 88.
- T. V. Narayana and D. H. Bent, Computation of the number of score sequences in round-robin tournaments, Canad. Math. Bull., 7 (1964), 133-136 (but table contains errors).
- D. Recoskie and J. Sawada, The Taming of Two Alley CATs, 2012.
- J. Riordan, The number of score sequences in tournaments, J. Combin. Theory, 5 (1968), 87-89. [The main result of this paper seems to be wrong - see A210726.] See also John Riordan, Erratum, J. Comb. Theory 6 (1969), 226.
- Paul K. Stockmeyer, Counting Various Classes of Tournament Score Sequences, J. Integer Seq. 26 (2023), Article 23.5.2.
- Eric Weisstein's World of Mathematics, Score Sequence.
- K. Winston, Letter to N. J. A. Sloane, Aug 05 1978
- Kenneth J. Winston and Daniel J. Kleitman, On the Asymptotic Number of Tournament Score Sequences, J. Comb. Theory Series A 35 (1983) 208-230.
- Index entries for sequences related to tournaments
See
A274098 for the most likely score sequence.
-
max = 40; (* b = A145855 *) b[0] = 1; b[n_] := DivisorSum[n, (-1)^(n+#)* EulerPhi[n/#]*Binomial[2*#, #]/(2*n)&]; s = Exp[Sum[b[m]*x^m/m, {m, 1, max}]] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
{A145855(n)=sumdiv(n,d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d,d)/(2*n))}
{a(n)=polcoeff(exp(sum(m=1,n,A145855(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Jul 17 2013
a(11) corrected by Kenneth Winston, Aug 05 1978
A019589
Number of nondecreasing sequences that are differences of two permutations of 1,2,...,n.
Original entry on oeis.org
1, 1, 2, 5, 16, 59, 246, 1105, 5270, 26231, 135036, 713898, 3857113, 21220020, 118547774, 671074583
Offset: 0
Alex Postnikov (apost(AT)math.mit.edu)
- Olivier Gérard and Karol Penson, Set partitions, multiset permutations and bi-permutations, in preparation.
- C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- David A. Corneth, Nondecreasing sequences for a(n) where n = 0..8.
- J.-P. Davalan, Permutations et tomographie - X-rays.
- James D. Louck, Power of a determinant with two physical applications, Internat. J. Math. & Math. Sci., Vol. 22, No 4(1999) pp. 745-759 - S 0161-1712(99)22745-7
-
with(LinearAlgebra): f:=n->nops([coeffs(Permanent(Matrix(n, (i, j) -> a[i+j])))]): [seq(f(n), n=1..10)]; # Vaclav Kotesovec, Mar 29 2019
-
a[n_] := Table[b[i+j], {i, n}, {j, n}] // Permanent // Expand // Length;
Array[a, 10, 0] (* Jean-François Alcover, May 29 2019, after Vaclav Kotesovec *)
-
a(n) = my(l=List(), v=[1..n]);for(i=0, n!-1, listput(l, vecsort(v-numtoperm(n,i)))); listsort(l, 1); #l
-
import itertools
def a019589(n):
s = set()
for p in itertools.permutations(range(n)):
s.add(tuple(sorted([k - p[k] for k in range(n)])))
return len(s)
print([a019589(n) for n in range(10)])
# Bert Dobbelaere, Jan 19 2019
A047730
Number of score sequences in tournament with n players, when 4 points are awarded in each game.
Original entry on oeis.org
1, 3, 13, 76, 521, 3996, 32923, 286202, 2590347, 24203935, 232050202, 2272449745, 22653570386, 229274897514, 2350933487206, 24381053759852, 255382755251622, 2698732882975782, 28743579211912338
Offset: 1
- P. A. MacMahon, Chess tournaments and the like treated by the calculus o symmetric functions, Coll. Papers I, MIT Press, 344-375.
A047729
Number of score sequences in tournament with n players, when 3 points are awarded in each game.
Original entry on oeis.org
1, 2, 8, 37, 198, 1178, 7548, 50944, 357855, 2595250, 19313372, 146815503, 1136158495, 8927025989, 71065654235, 572215412354, 4653746621835, 38184724333615, 315792633485360, 2630183440412617, 22046522161472304
Offset: 1
- P. A. MacMahon, Chess tournaments and the like treated by the calculus of symmetric functions, Coll. Papers I, MIT Press, 344-375.
A064626
Football tournament numbers: the number of possible point series for a tournament of n teams playing each other once where 3 points are awarded to the winning team and 1 to each in the case of a tie.
Original entry on oeis.org
1, 2, 7, 40, 355, 3678, 37263, 361058, 3403613, 31653377, 292547199, 2696619716
Offset: 1
Thomas Schulze (jazariel(AT)tiscalenet.it), Sep 30 2001
For 2 teams there are 2 possible outcomes: [0, 3] and [1, 1], so a(2) = 2.
For 3 teams the outcomes are [0, 3, 6], [1, 3, 4], [3, 3, 3], [1, 1, 6], [1, 2, 4], [0, 4, 4] and [2, 2, 2], so a(3) is 7. Note that the outcome [3, 3, 3] can be obtained in two ways: (A beats B, B beats C, C beats A) or (B beats A, A beats C, C beats B).
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012) 260-288. - From _N. J. A. Sloane_, Feb 15 2013
- Wikipedia, Three points for a win
a(10) from Ming Li (dawnli(AT)ustc.edu), Jun 20 2008
A047731
Number of score sequences in tournament with n players, when 5 points are awarded in each game.
Original entry on oeis.org
1, 3, 18, 131, 1111, 10461, 105819, 1127413, 12499673, 143021541, 1678718575, 20123155604, 245521479531, 3041006378312, 38157059717410, 484209044329613, 6205758830280388, 80235572611152385
Offset: 1
- P. A. MacMahon, Chess tournaments and the like treated by the calculus o symmetric functions, Coll. Papers I, MIT Press, 344-375.
A362968
Number of integral points in 2 * permutohedron of order n.
Original entry on oeis.org
1, 3, 19, 201, 3081, 62683, 1598955, 49180113, 1773405649, 73410669171, 3432267261699, 178922825114905, 10291053760222041, 647436905815864011, 44229766376059342171, 3260749830852693615777, 258039101519624535653025
Offset: 1
-
w := LambertW(-2*x): egf := exp(-w * (2 + w) / 4): ser := series(egf, x, 20):
seq(n! * coeff(ser, x, n), n = 1..17); # Peter Luschny, Jun 19 2023
-
a362968(n) = my(x=y+O(y^(n+1))); n! * polcoef( exp(-lambertw(-2*x)/2 - lambertw(-2*x)^2/4), n );
A064422
Football league numbers: the possible point series for a league of n teams playing each other twice where for each match 3 points are awarded to the winning team and 1 to each in the case of a tie.
Original entry on oeis.org
1, 4, 40, 748, 13744, 238568, 4054190
Offset: 1
Thomas Schulze (jazariel(AT)tiscalenet.it), Sep 30 2001
For 2 teams there are 4 possible outcomes: [0, 6], [1, 4], [2, 2] and [3, 3], so a(2) = 4.
A047733
Number of score sequences in tournament with n players, when 6 points are awarded in each game.
Original entry on oeis.org
1, 4, 25, 213, 2131, 23729, 283681, 3574222, 46866712, 634204317, 8803501719, 124799484286, 1800669899917, 26374204955323, 391331674556361, 5872226011836383, 88993282402441857, 1360552594176453319
Offset: 1
Showing 1-10 of 15 results.
Comments