cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A066948 Triangle of prime signature of A007870(n), read by rows.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 6, 2, 1, 13, 5, 1, 18, 7, 2, 1, 36, 11, 3, 1, 48, 20, 5, 2, 79, 28, 9, 3, 109, 42, 13, 5, 1, 170, 64, 19, 7, 1, 230, 90, 28, 11, 2, 1, 337, 127, 40, 17, 3, 1, 453, 181, 58, 24, 5, 2, 648, 247, 80, 34, 7, 3, 859, 338, 111, 48, 11, 5, 1, 1185, 465, 151, 66, 15, 7, 1
Offset: 1

Views

Author

Naohiro Nomoto, Jan 25 2002

Keywords

Comments

Lengths of rows are 1 2 2 3 3 4 4 4 4 5 5 6 6 .... (A000720).

Examples

			0.1.1.5.6.13.18.36.48.79...etc
....1.1.2..5..7.11.20.28...etc
........1..1..2..3..5..9...etc
..............1..1..2..3...etc
		

Extensions

Extended by David Wasserman, Dec 04 2002

A006906 a(n) is the sum of products of terms in all partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1.
Same parity as A000009. - Jon Perry, Feb 12 2004

Examples

			Partitions of 0 are {()} whose products are {1} whose sum is 1.
Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
		

References

  • G. Labelle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006906 n = p 1 n 1 where
       p _ 0 s = s
       p k m s | mReinhard Zumkeller, Dec 07 2011
  • Maple
    A006906 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add( A078308(k)*procname(n-k),k=1..n)/n ;
        end if;
    end proc: # R. J. Mathar, Dec 14 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    (* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *)
    Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *)
    nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)

Formula

The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007
a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007
G.f.: 1 / Product_{k>=1} (1-k*x^k).
G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011
a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017
O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017

Extensions

More terms from Vladeta Jovovic, Oct 04 2001
Edited by N. J. A. Sloane, May 19 2007

A338156 Irregular triangle read by rows in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the divisors of (n - m + 1), with 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 5, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 3, 6, 1, 5, 1, 5, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2020

Keywords

Comments

In other words: in row n replace every term of n-th row of A176206 with its divisors.
The terms in row n are also all parts of all partitions of n.
As in A336812 here we introduce a new type of table which shows the correspondence between divisors and partitions. More precisely the table shows the correspondence between all divisors of all terms of the n-th row of A176206 and all parts of all partitions of n, with n >= 1. Both the mentionded divisors and the mentioned parts are the same numbers (see Example section). That is because all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
For an equivalent table for all parts of the last section of the set of partitions of n see the subsequence A336812. The section is the smallest substructure of the set of partitions in which appears the correspondence divisor/part.
From Omar E. Pol, Aug 01 2021: (Start)
The terms of row n appears in the triangle A346741 ordered in accordance with the successive sections of the set of partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For the connection with the tower described in A221529 see also A340035. (End)

Examples

			Triangle begins:
  [1];
  [1,2],   [1];
  [1,3],   [1,2],   [1],   [1];
  [1,2,4], [1,3],   [1,2], [1,2], [1],   [1],   [1];
  [1,5],   [1,2,4], [1,3], [1,3], [1,2], [1,2], [1,2], [1], [1], [1], [1], [1];
  ...
For n = 5 the 5th row of A176206 is [5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] so replacing every term with its divisors we have the 5th row of this triangle.
Also, if the sequence is written as an irregular tetrahedron so the first six slices are:
  [1],
  -------
  [1, 2],
  [1],
  -------
  [1, 3],
  [1, 2],
  [1],
  [1];
  ----------
  [1, 2, 4],
  [1, 3],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1];
  ----------
  [1, 5],
  [1, 2, 4],
  [1, 3],
  [1, 3],
  [1, 2],
  [1, 2],
  [1, 2],
  [1],
  [1],
  [1],
  [1],
  [1];
.
The above slices appear in the lower zone of the following table which shows the correspondence between the mentioned divisors and all parts of all partitions of the positive integers.
The table is infinite. It is formed by three zones as follows:
The upper zone shows the partitions of every positive integer in colexicographic order (cf. A026792, A211992).
The lower zone shows the same numbers but arranged as divisors in accordance with the slices of the tetrahedron mentioned above.
Finally the middle zone shows the connection between the upper zone and the lower zone.
For every positive integer the numbers in the upper zone are the same numbers as in the lower zone.
.
|---|---------|-----|-------|---------|------------|---------------|
| n |         |  1  |   2   |    3    |      4     |       5       |
|---|---------|-----|-------|---------|------------|---------------|
| P |         |     |       |         |            |               |
| A |         |     |       |         |            |               |
| R |         |     |       |         |            |               |
| T |         |     |       |         |            |  5            |
| I |         |     |       |         |            |  3  2         |
| T |         |     |       |         |  4         |  4  1         |
| I |         |     |       |         |  2  2      |  2  2  1      |
| O |         |     |       |  3      |  3  1      |  3  1  1      |
| N |         |     |  2    |  2 1    |  2  1 1    |  2  1  1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1  1 1 1  |  1  1  1 1 1  |
----|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12  5 2 1  | 20  8  4 2 1  |
|   |         |  |  |  |/|  |  |/|/|  |  |/ |/|/|  |  |/ | /|/|/|  |
| L | A066633 |  1  |  2 1  |  4 1 1  |  7  3 1 1  | 12  4  2 1 1  |
| I |         |  *  |  * *  |  * * *  |  *  * * *  |  *  *  * * *  |
| N | A002260 |  1  |  1 2  |  1 2 3  |  1  2 3 4  |  1  2  3 4 5  |
| K |         |  =  |  = =  |  = = =  |  =  = = =  |  =  =  = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7  6 3 4  | 12  8  6 4 5  |
|   |         |  |  |  |\|  |  |\|\|  |  |\ |\|\|  |  |\ |\ |\|\|  |
|   | A206561 |  1  |  4 2  |  9 5 3  | 20 13 7 4  | 35 23 15 9 5  |
|---|---------|-----|-------|---------|------------|---------------|
.
|---|---------|-----|-------|---------|------------|---------------|
|   | A027750 |  1  |  1 2  |  1   3  |  1  2   4  |  1         5  |
|   |---------|-----|-------|---------|------------|---------------|
|   | A027750 |     |  1    |  1 2    |  1    3    |  1  2    4    |
|   |---------|-----|-------|---------|------------|---------------|
| D | A027750 |     |       |  1      |  1  2      |  1     3      |
| I | A027750 |     |       |  1      |  1  2      |  1     3      |
| V |---------|-----|-------|---------|------------|---------------|
| I | A027750 |     |       |         |  1         |  1  2         |
| S | A027750 |     |       |         |  1         |  1  2         |
| O | A027750 |     |       |         |  1         |  1  2         |
| R |---------|-----|-------|---------|------------|---------------|
| S | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|   | A027750 |     |       |         |            |  1            |
|---|---------|-----|-------|---------|------------|---------------|
.
Note that every row in the lower zone lists A027750.
Also the lower zone for every positive integer can be constructed using the first n terms of the partition numbers. For example: for n = 5 we consider the first 5 terms of A000041 (that is [1, 1, 2, 3, 5]) then the 5th slice is formed by a block with the divisors of 5, one block with the divisors of 4, two blocks with the divisors of 3, three blocks with the divisors of 2, and five blocks with the divisors of 1.
Note that the lower zone is also in accordance with the tower (a polycube) described in A221529 in which its terraces are the symmetric representation of sigma starting from the top (cf. A237593) and the heights of the mentioned terraces are the partition numbers A000041 starting from the base.
The tower has the same volume (also the same number of cubes) equal to A066186(n) as a prism of partitions of size 1*n*A000041(n).
The above table shows the correspondence between the prism of partitions and its associated tower since the number of parts in all partitions of n is equal to A006128(n) equaling the number of divisors in the n-th slice of the lower table and equaling the same the number of terms in the n-th row of triangle. Also the sum of all parts of all partitions of n is equal to A066186(n) equaling the sum of all divisors in the n-th slice of the lower table and equaling the sum of the n-th row of triangle.
		

Crossrefs

Nonzero terms of A340031.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812 (a subsequence).
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

Programs

  • Mathematica
    A338156[rowmax_]:=Table[Flatten[Table[ConstantArray[Divisors[n-m],PartitionsP[m]],{m,0,n-1}]],{n,rowmax}];
    A338156[10] (* Generates 10 rows *) (* Paolo Xausa, Jan 12 2023 *)
  • PARI
    A338156(rowmax)=vector(rowmax,n,concat(vector(n,m,concat(vector(numbpart(m-1),i,divisors(n-m+1))))));
    A338156(10) \\ Generates 10 rows - Paolo Xausa, Feb 17 2023

A325504 Product of products of parts over all strict integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Examples

			The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120.
The sequence of terms together with their prime indices begins:
              1: {}
              1: {}
              2: {1}
              6: {1,2}
             12: {1,1,2}
            120: {1,1,1,2,3}
           1440: {1,1,1,1,1,2,2,3}
          40320: {1,1,1,1,1,1,1,2,2,3,4}
        1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4}
     1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4}
  2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
		

Crossrefs

Cf. A000009, A006128, A007870 (non-strict version), A015723, A022629 (sum of products of parts), A066186, A066189, A066633, A246867, A325505, A325506, A325512, A325513, A325515.

Programs

  • Maple
    a:= n-> mul(i, i=map(x-> x[], select(x->
            nops(x)=nops({x[]}), combinat[partition](n)))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)->
         [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[Times@@Join@@Select[IntegerPartitions[n],UnsameQ@@#&],{n,0,10}]

Formula

A001222(a(n)) = A325515(n).
a(n) = A003963(A325506(n)).

A325500 Heinz number of the set of Heinz numbers of integer partitions of n. Heinz numbers of rows of A215366.

Original entry on oeis.org

2, 3, 35, 2717, 22235779, 3163570326979, 51747966790650260753033, 188828800892079861898153036258130093, 2034903808706825942766196978067005215014684343665351270467, 75367279796373180679613801327275978589820813788234346991420766634058571423774287454563
Offset: 0

Views

Author

Gus Wiseman, May 05 2019

Keywords

Comments

The Heinz number of a set of positive integers {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
All terms are squarefree and pairwise relatively prime.

Examples

			The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with Heinz number prime(5)*prime(6)*prime(8) = 2717, so a(3) = 2717.
The sequence of terms together with their prime indices begins:
                        2: {1}
                        3: {2}
                       35: {3,4}
                     2717: {5,6,8}
                 22235779: {7,9,10,12,16}
            3163570326979: {11,14,15,18,20,24,32}
  51747966790650260753033: {13,21,22,25,27,28,30,36,40,48,64}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(Times@@Prime/@#&/@IntegerPartitions[n]),{n,0,5}]

Formula

A001221(a(n)) = A001222(a(n)) = A000041(n).
A056239(a(n)) = A145519(n).
A003963(a(n)) = A325501(n).
A181819(A003963(a(n))) = A325507(n).

A325501 Product of Heinz numbers over all integer partitions of n.

Original entry on oeis.org

1, 2, 12, 240, 120960, 638668800, 15064408719360000, 27259975545259032576000000, 682714624600511148826789083611136000000000, 2948964060660649503322235948384635104494106968064000000000000000
Offset: 0

Views

Author

Gus Wiseman, May 06 2019

Keywords

Comments

Row-products of A215366 (positive integers arranged by sum of prime indices A056239).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with product 240, so a(3) = 240.
The sequence of terms together with their prime indices begins:
          1: {}
          2: {1}
         12: {1,1,2}
        240: {1,1,1,1,2,3}
     120960: {1,1,1,1,1,1,1,2,2,2,3,4}
  638668800: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(Join@@IntegerPartitions[n]),{n,0,5}]

Formula

A001222(a(n)) = A006128(n).
A056239(a(n)) = A066186(n).
A003963(a(n)) = A007870(n).
A124010(a(n),i) = A066633(n,i).

A325507 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.

Original entry on oeis.org

1, 2, 6, 28, 340, 3108, 106932, 2732340, 236790060, 19703562780, 3419598096420, 674127752953380, 264134168649181380, 95825592671995399620, 67662122741507082338220, 50556978553034312461203420, 69259146896604886347745839660, 104191622563656655781003976625020
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also the Heinz number of row n of A066633.
The Heinz number of an integer partition or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)}, with multiset union {1,1,1,1,1,1,1,2,2,2,3,4}, with multiplicities (7,3,1,1), so a(4) = prime(7)*prime(3)*prime(1)*prime(1) = 340.
The sequence of terms together with their prime indices begins:
                        1: {}
                        2: {1}
                        6: {1,2}
                       28: {1,1,4}
                      340: {1,1,3,7}
                     3108: {1,1,2,4,12}
                   106932: {1,1,2,4,8,19}
                  2732340: {1,1,2,3,6,11,30}
                236790060: {1,1,2,3,6,9,19,45}
              19703562780: {1,1,2,3,5,8,15,26,67}
            3419598096420: {1,1,2,3,5,8,13,21,41,97}
          674127752953380: {1,1,2,3,5,7,12,18,31,56,139}
       264134168649181380: {1,1,2,3,5,7,12,17,28,45,83,195}
     95825592671995399620: {1,1,2,3,5,7,11,16,25,38,63,112,272}
  67662122741507082338220: {1,1,2,3,5,7,11,16,24,35,55,87,160,373}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Sort[Join@@IntegerPartitions[n]]],{n,0,15}]

Formula

a(n) = Product_{i = 1..n} prime(A066633(n,i)).
a(n) = A181819(A003963(A325500(n))).
a(n) = A181819(A325501(n)).
A001222(a(n)) = n.
A056239(a(n)) = A006128(n).
For n > 0, A181819(a(n)) = A087009(n + 1).

A325512 Number of distinct nonzero numbers of partitions of n counted by length.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 7, 7, 10, 9, 10, 12, 14, 15, 16, 16, 18, 19, 19, 20, 22, 23, 23, 25, 26, 27, 27, 28, 30, 31, 31, 33, 34, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 56, 58, 60, 61, 62, 63, 64, 65, 65
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also the number of distinct nonzero entries in row n of A008284.

Examples

			Row n = 9 of A008284 is (1, 4, 7, 6, 5, 3, 2, 1, 1), which has union {1,2,3,4,5,6,7}, so a(9) = 7.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          b(n, i-1)+expand(x*b(n-i, min(n-i, i))))
        end:
    a:= n-> nops({coeffs(b(n$2))}):
    seq(a(n), n=0..90);  # Alois P. Heinz, Feb 23 2024
  • Mathematica
    Table[Length[Union[Table[Length[IntegerPartitions[n,{k}]],{k,n}]]],{n,30}]

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 23 2024

A346741 Irregular triangle read by rows which is constructed in row n replacing the first A000070(n-1) terms of A336811 with their divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 5, 1, 2, 4, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Jul 31 2021

Keywords

Comments

The terms in row n are also all parts of all partitions of n.
The terms of row n in nonincreasing order give the n-th row of A302246.
The terms of row n in nondecreasing order give the n-th row of A302247.
For further information about the correspondence divisor/part see A336811 and A338156.

Examples

			Triangle begins:
[1];
[1],[1, 2];
[1],[1, 2],[1, 3],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1];
[1],[1, 2],[1, 3],[1],[1, 2, 4],[1, 2],[1],[1, 5],[1, 3],[1, 2],[1],[1];
...
Below the table shows the correspondence divisor/part.
|---|-----------------|-----|-------|---------|-----------|-------------|
| n |                 |  1  |   2   |    3    |     4     |      5      |
|---|-----------------|-----|-------|---------|-----------|-------------|
| P |                 |     |       |         |           |             |
| A |                 |     |       |         |           |             |
| R |                 |     |       |         |           |             |
| T |                 |     |       |         |           |  5          |
| I |                 |     |       |         |           |  3 2        |
| T |                 |     |       |         |  4        |  4 1        |
| I |                 |     |       |         |  2 2      |  2 2 1      |
| O |                 |     |       |  3      |  3 1      |  3 1 1      |
| N |                 |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |                 |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
----|-----------------|-----|-------|---------|-----------|-------------|
.
|---|-----------------|-----|-------|---------|-----------|-------------|
|   |         A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |                 |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I |         A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |                 |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K |         A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |                 |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   |         A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|-----------------|-----|-------|---------|-----------|-------------|
.
.   |-------|
.   |Section|
|---|-------|---------|-----|-------|---------|-----------|-------------|
|   |   1   | A000012 |  1  |  1    |  1      |  1        |  1          |
|   |-------|---------|-----|-------|---------|-----------|-------------|
|   |   2   | A000034 |     |  1 2  |  1 2    |  1 2      |  1 2        |
|   |-------|---------|-----|-------|---------|-----------|-------------|
| D |   3   | A010684 |     |       |  1   3  |  1   3    |  1   3      |
| I |       | A000012 |     |       |  1      |  1        |  1          |
| V |-------|---------|-----|-------|---------|-----------|-------------|
| I |   4   | A069705 |     |       |         |  1 2   4  |  1 2   4    |
| S |       | A000034 |     |       |         |  1 2      |  1 2        |
| O |       | A000012 |     |       |         |  1        |  1          |
| R |-------|---------|-----|-------|---------|-----------|-------------|
| S |   5   | A010686 |     |       |         |           |  1       5  |
|   |       | A010684 |     |       |         |           |  1   3      |
|   |       | A000034 |     |       |         |           |  1 2        |
|   |       | A000012 |     |       |         |           |  1          |
|   |       | A000012 |     |       |         |           |  1          |
|---|-------|---------|-----|-------|---------|-----------|-------------|
.
In the above table both the zone of partitions and the "Link" zone are the same zones as in the table of the example section of A338156, but here in the lower zone the divisors are ordered in accordance with the sections of the set of partitions of n.
The number of rows in the j-th section of the lower zone is equal to A000041(j-1).
The divisors of the j-th section are also the parts of the j-th section of the set of partitions of n.
		

Crossrefs

Another version of A338156.
Row n has length A006128(n).
The sum of row n is A066186(n).
The product of row n is A007870(n).
Row n lists the first n rows of A336812.
The number of parts k in row n is A066633(n,k).
The sum of all parts k in row n is A138785(n,k).
The number of parts >= k in row n is A181187(n,k).
The sum of all parts >= k in row n is A206561(n,k).
The number of parts <= k in row n is A210947(n,k).
The sum of all parts <= k in row n is A210948(n,k).

A064430 Product of the sizes of the conjugacy classes of the symmetric group S_n.

Original entry on oeis.org

1, 1, 6, 864, 43200000, 272097792000000000, 3416681839784939886182400000000000, 1847600699255039694224318542233446367734016245760000000000000000
Offset: 1

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Sep 30 2001

Keywords

Examples

			a(3) = 6 because the sizes of the conjugacy classes in S_3 are 1,2,3 and the product is 6.
		

Crossrefs

Programs

  • Magma
    [ &*[ c[2] : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1$2], ((f, g)->
          [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i))))
        end:
    a:= n-> n!^combinat[numbpart](n)/b(n$2)[2]^2:
    seq(a(n), n=1..9);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g},
         {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1},
         b[n, i-1]], If[i > n, {0, 1}, b[n-i, i]]]];
    A007870[n_] := b[n, n][[2]];
    a[n_] := (n!)^PartitionsP[n]/A007870[n]^2;
    Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *)

Formula

a(n) = (n!)^A000041(n) / A007870(n)^2.

Extensions

More terms from Vladeta Jovovic, Oct 04 2001
Showing 1-10 of 13 results. Next