cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A007870 Determinant of character table of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 6, 96, 2880, 9953280, 100329062400, 10651768002183168000, 150283391703941024789299200000, 9263795272057860957392207640004657152000000000, 16027108137650009941734148595388542471170145479274004480000000000000
Offset: 0

Views

Author

Peter J. Cameron, Götz Pfeiffer [ goetz(AT)dcs.st-and.ac.uk ]

Keywords

Examples

			1 + x + 2*x^2 + 6*x^3 + 96*x^4 + 2880*x^5 + 9953280*x^6 + 100329062400*x^7 + ...
The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)} with product 4*3*1*2*2*2*1*1*1*1*1*1 = 96. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • GAP
    List(List([0..11],n->Flat(Partitions(n))),Product); # Muniru A Asiru, Dec 21 2018
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1$2], ((f, g)->
          [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 30 2013
  • Mathematica
    Needs["Combinatorica`"]; Table[Times@@Flatten[Partitions[n]], {n, 10}]
    a[ n_] := If[n < 0, 0, Times @@ Flatten @ IntegerPartitions @ n] (* Michael Somos, Jun 11 2012 *)
    Table[Exp[Total[Map[Log, IntegerPartitions [n]], 2]], {n, 1, 25}] (* Richard R. Forberg, Dec 08 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 1}, Function[{f, g}, {f[[1]] + g[[1]], f[[2]]*g[[2]]*i^g[[1]]}][If[i < 2, {0, 1}, b[n, i - 1]], If[i > n, {0, 1}, b[n - i, i]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
  • Python
    from sympy import prod
    from sympy.utilities.iterables import ordered_partitions
    a = lambda n: prod(map(prod, ordered_partitions(n))) if n > 0 else 1
    print([a(n) for n in range(0, 12)]) # Darío Clavijo, Feb 22 2024

Formula

Product of all parts of all partitions of n.
From Gus Wiseman, May 09 2019: (Start)
a(n) = A003963(A325501(n)).
A001222(a(n)) = A325536(n).
A001221(a(n)) = A000720(n).
(End)

A325506 Product of Heinz numbers over all strict integer partitions of n.

Original entry on oeis.org

1, 2, 3, 30, 70, 2310, 180180, 21441420, 6401795400, 200984366583000, 41615822944675980000, 10515527757483671302380000, 4919824049783476260137727416400000, 5158181210492841550866520676965246284000000, 29776760895364738730693151196801613158042403043600000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

a(n) is the product of row n of A246867 (squarefree numbers arranged by sum of prime indices).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with Heinz numbers {13,22,21,30}, with product 13*22*21*30 = 180180, so a(6) = 180180.
The sequence of terms together with their prime indices begins:
                     1: {}
                     2: {1}
                     3: {2}
                    30: {1,2,3}
                    70: {1,3,4}
                  2310: {1,2,3,4,5}
                180180: {1,1,2,2,3,4,5,6}
              21441420: {1,1,2,2,3,4,4,5,6,7}
            6401795400: {1,1,1,2,2,3,3,4,5,5,6,7,8}
       200984366583000: {1,1,1,2,2,2,3,3,3,4,4,5,5,6,6,7,8,9}
  41615822944675980000: {1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6,7,7,8,9,10}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(Join@@Select[IntegerPartitions[n],UnsameQ@@#&]),{n,0,15}]

Formula

a(n) = Product_{i = 1..A000009(n)} A246867(n,i).
A001222(a(n)) = A015723(n).
A056239(a(n)) = A066189(n).
A003963(a(n)) = A325504(n).
a(n) = A003963(A325505(n)).

A325500 Heinz number of the set of Heinz numbers of integer partitions of n. Heinz numbers of rows of A215366.

Original entry on oeis.org

2, 3, 35, 2717, 22235779, 3163570326979, 51747966790650260753033, 188828800892079861898153036258130093, 2034903808706825942766196978067005215014684343665351270467, 75367279796373180679613801327275978589820813788234346991420766634058571423774287454563
Offset: 0

Views

Author

Gus Wiseman, May 05 2019

Keywords

Comments

The Heinz number of a set of positive integers {y_1,...,y_k} is prime(y_1)*...*prime(y_k).
All terms are squarefree and pairwise relatively prime.

Examples

			The integer partitions of 3 are {(3), (2,1), (1,1,1)}, with Heinz numbers {5,6,8}, with Heinz number prime(5)*prime(6)*prime(8) = 2717, so a(3) = 2717.
The sequence of terms together with their prime indices begins:
                        2: {1}
                        3: {2}
                       35: {3,4}
                     2717: {5,6,8}
                 22235779: {7,9,10,12,16}
            3163570326979: {11,14,15,18,20,24,32}
  51747966790650260753033: {13,21,22,25,27,28,30,36,40,48,64}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(Times@@Prime/@#&/@IntegerPartitions[n]),{n,0,5}]

Formula

A001221(a(n)) = A001222(a(n)) = A000041(n).
A056239(a(n)) = A145519(n).
A003963(a(n)) = A325501(n).
A181819(A003963(a(n))) = A325507(n).

A325507 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.

Original entry on oeis.org

1, 2, 6, 28, 340, 3108, 106932, 2732340, 236790060, 19703562780, 3419598096420, 674127752953380, 264134168649181380, 95825592671995399620, 67662122741507082338220, 50556978553034312461203420, 69259146896604886347745839660, 104191622563656655781003976625020
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also the Heinz number of row n of A066633.
The Heinz number of an integer partition or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)}, with multiset union {1,1,1,1,1,1,1,2,2,2,3,4}, with multiplicities (7,3,1,1), so a(4) = prime(7)*prime(3)*prime(1)*prime(1) = 340.
The sequence of terms together with their prime indices begins:
                        1: {}
                        2: {1}
                        6: {1,2}
                       28: {1,1,4}
                      340: {1,1,3,7}
                     3108: {1,1,2,4,12}
                   106932: {1,1,2,4,8,19}
                  2732340: {1,1,2,3,6,11,30}
                236790060: {1,1,2,3,6,9,19,45}
              19703562780: {1,1,2,3,5,8,15,26,67}
            3419598096420: {1,1,2,3,5,8,13,21,41,97}
          674127752953380: {1,1,2,3,5,7,12,18,31,56,139}
       264134168649181380: {1,1,2,3,5,7,12,17,28,45,83,195}
     95825592671995399620: {1,1,2,3,5,7,11,16,25,38,63,112,272}
  67662122741507082338220: {1,1,2,3,5,7,11,16,24,35,55,87,160,373}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Sort[Join@@IntegerPartitions[n]]],{n,0,15}]

Formula

a(n) = Product_{i = 1..n} prime(A066633(n,i)).
a(n) = A181819(A003963(A325500(n))).
a(n) = A181819(A325501(n)).
A001222(a(n)) = n.
A056239(a(n)) = A006128(n).
For n > 0, A181819(a(n)) = A087009(n + 1).
Showing 1-5 of 5 results.