cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011848 a(n) = floor(binomial(n, 2)/2).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588, 612, 637, 663, 689, 715, 742, 770, 798
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Column sums of an array of the odd numbers repeatedly shifted 4 places to the right:
1 3 5 7 9 11 13 15 17...
1 3 5 7 9...
1...
.........................
-------------------------
1 3 5 7 10 14 18 22 27...
Floor of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014
Beginning with a(4)=3, the sequence might be called the "off-axis" Ulam-Spiral numbers because they are the numbers in ascending order on the horizontal and vertical spokes (heading outward) starting with the first turning points on the spiral (i.e., 3, 5, 7 and 10). That is, starting with: 3 (upward); 5 (leftward); 7 (downward) and 10 (rightward). These are A033991 (starting at a(1)), A007742 (starting at a(1)), A033954 (starting at a(1)) and A001107 (starting at a(2)), respectively. These quadri-sections are summarized in the formulas of Sep 26 2015. - Bob Selcoe, Oct 05 2015
Conjecture: For n = 2, a(n) is the greatest k such that A123663(k) < A000217(n - 2). - Peter Kagey, Nov 18 2016
a(n) is also the matching number of the n-triangular graph, (n-1)-triangular honeycomb queen graph, (n-1)-triangular honeycomb bishop graphs, and (for n > 7) (n-1)-triangular honeycomb obtuse knight graphs. - Eric W. Weisstein, Jun 02 2017 and Apr 03 2018
After 0, 0, 0, add 1, then add 2 three times, then add 3, then add 4 three times, then add 5, etc.; i.e., first differences are A004524 = (0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, ...). - M. F. Hasler, May 09 2018
Let s(0) = s(1) = 1, s(-1) = s(2) = x, and s(n+2)*s(n-2) = s(n+1)*s(n-1) + s(n)^2 for all n in Z. Then s(n) = p(n) / x^e(n) is a Laurent polynomial in x with p(n) a polynomial with nonnegative integer coefficients of degree a(n) for all n in Z. If x = 1, then s(n) = p(n) = A006720(n+1). - Michael Somos, Mar 22 2023

Examples

			G.f. = x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 14*x^8 + 18*x^9 + 22*x^10 + ...
p(0) = p(1) = 1, p(2) = 1 + x, p(3) = 1 + x + x^3, p(4) = 1 + 2*x + 2*x^2 + x^3 + x^5. - _Michael Somos_, Mar 22 2023
		

Crossrefs

A column of triangle A011857.
First differences are in A004524.
Cf. A007318, A033991, A007742, A033954, A001107, A006720, A035608 (bisection), A156859 (bisection).

Programs

  • GAP
    List([0..60],n->Int(Binomial(n,2)/2)); # Muniru A Asiru, Apr 05 2018
    
  • Haskell
    a011848 n = if n < 2 then 0 else flip div 2 $ a007318 n 2
    -- Reinhard Zumkeller, Mar 04 2015
    
  • Magma
    [ Floor(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    seq(floor(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Floor[n (n - 1)/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    CoefficientList[Series[x^3/((1 + x^2) (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 21 2013 *)
    LinearRecurrence[{3, -4, 4, -4, 1}, {0, 0, 1, 3, 5}, {0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[Floor[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[1/4 (-1 + (-1 + n) n + Cos[n Pi/2] + Sin[n Pi/2]), {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Floor[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    a(n) = binomial(n, 2)\2;
    
  • PARI
    vector(100, n, n--; floor(n*(n-1)/4)) \\ Altug Alkan, Sep 30 2015
    
  • Python
    def a(n): return n*(n-1)//4 # Christoph B. Kassir, Oct 07 2022
  • Sage
    [floor(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
    

Formula

G.f.: x^3*(1-x^2)/((1-x)^3*(1-x^4)).
G.f.: x^3/((1+x^2)*(1-x)^3). - Jon Perry, Mar 31 2004
a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5). - R. J. Mathar, Apr 15 2010
a(n) = floor((n/(1+e^(1/n)))^2). - Richard R. Forberg, Jun 19 2013
a(n) = floor(n*(n-1)/4). - T. D. Noe, Jun 20 2013
a(n) = (1/4) * ( n^2 - n - 1 + (-1)^floor(n/2) ). - Ralf Stephan, Aug 11 2013
a(n) = A054925(n) - A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014
a(4*n) = A033991(n). a(4*n+1) = A007742(n). a(4*n+2) = A033954(n). a(4*n+3) = A001107(n+1). - Bob Selcoe, Sep 26 2015
E.g.f.: (sin(x) + cos(x) + (x^2 - 1)*exp(x))/4. - Ilya Gutkovskiy, Nov 18 2016
A054925(n) = a(-n). A035608(n) = a(2*n+1). Wesley Ivan Hurt, Jun 09 2014
A156859(n) = a(2*n+2). - Michael Somos, Nov 18 2016
Euler transform of length 4 sequence [ 3, -1, 0, 1]. - Michael Somos, Nov 18 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=3} 1/a(n) = 40/9 - 2*Pi/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 32/9 - 4*log(2). (End)
0 = a(n+2)*(a(n)*(a(n) -6*a(n+1) +4*a(n+2)) +a(n+1)*(8*a(n+1) -10*a(n+2)) + 3*a(n+2)^2) +a(n+3)*(a(n)*(+a(n) -2*a(n+1)) +a(n+2)*(2*a(n+1) -a(n+2))) for all n in Z. - Michael Somos, Mar 22 2023
2*a(n) + 2*a(n-2) = (n-1)*(n-2). - R. J. Mathar, Feb 12 2024