A259976 Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
Offset: 0
Examples
The triangle begins: [0] 1 [1] 1 [2] 1 [3] 1,0, [4] 1,0,1,1, [5] 1,0,1,2,2,0, [6] 1,0,1,3,4,6,6,3, [7] 1,0,1,3,5,11,20,24,32,34,17 [8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89 [9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637 ...
Links
- Russell Merris and William Watkins, Tensors and graphs, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 534-547.
- Andrey Zabolotskiy, a259976 (implementation in Rust).
Crossrefs
Programs
-
Sage
from sage.groups.perm_gps.permgroup_element import make_permgroup_element for p in range(8): m = p*(p-1)//2 Sm = SymmetricGroup(m) denom = factorial(p) elements = [] for perm in SymmetricGroup(p): t = perm.tuple() eperm = [] for v2 in range(p): for v1 in range(v2): w1, w2 = sorted([t[v1], t[v2]]) eperm.append((w2-1)*(w2-2)//2+w1) elements.append(make_permgroup_element(Sm, eperm)) for q in range(m//2+1): char = SymmetricGroupRepresentation([m-q, q]).to_character() numer = sum(char(e) for e in elements) print((p, q), numer//denom) # Andrey Zabolotskiy, Aug 28 2018
Formula
From Andrey Zabolotskiy, Aug 28 2018: (Start)
T(n,k) = A005368(k) for n >= 2*k. (End)
Extensions
Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by Andrey Zabolotskiy, Sep 06 2018
Comments