cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A002378 Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0

Views

Author

Keywords

Comments

4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
For n>=2, a(n) is the number of faces on a n+1-zone rhombic zonohedron. Each pair of a collection of great circles on a sphere intersects at two points, so there are 2*binomial(n+1,2) intersections. The dual of the implied polyhedron is a rhombic zonohedron, its faces corresponding to the intersections. - Shel Kaphan, Aug 12 2025

Examples

			a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
		

References

  • W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
  • J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
  • H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
  • Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.

Crossrefs

Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

Formula

G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
a(n) = A016742(n) - A049450(n). - Leo Tavares, Mar 15 2025

Extensions

Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009

A004526 Nonnegative integers repeated, floor(n/2).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {k: 1 <= 2k <= n}.
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(2).
Dimension of the space of weight 1 modular forms for Gamma_1(n+1).
Number of ways 2^n is expressible as r^2 - s^2 with s > 0. Proof: (r+s) and (r-s) both should be powers of 2, even and distinct hence a(2k) = a(2k-1) = (k-1) etc. - Amarnath Murthy, Sep 20 2002
Lengths of sides of Ulam square spiral; i.e., lengths of runs of equal terms in A063826. - Donald S. McDonald, Jan 09 2003
Number of partitions of n into two parts. A008619 gives partitions of n into at most two parts, so A008619(n) = a(n) + 1 for all n >= 0. Partial sums are A002620 (Quarter-squares). - Rick L. Shepherd, Feb 27 2004
a(n+1) is the number of 1's in the binary expansion of the Jacobsthal number A001045(n). - Paul Barry, Jan 13 2005
Number of partitions of n+1 into two distinct (nonzero) parts. Example: a(8) = 4 because we have [8,1],[7,2],[6,3] and [5,4]. - Emeric Deutsch, Apr 14 2006
Complement of A000035, since A000035(n)+2*a(n) = n. Also equal to the partial sums of A000035. - Hieronymus Fischer, Jun 01 2007
Number of binary bracelets of n beads, two of them 0. For n >= 2, a(n-2) is the number of binary bracelets of n beads, two of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = (-1)^n det(A). - Milan Janjic, Jan 24 2010
From Clark Kimberling, Mar 10 2011: (Start)
Let RT abbreviate rank transform (A187224). Then
RT(this sequence) = A187484;
RT(this sequence without 1st term) = A026371;
RT(this sequence without 1st 2 terms) = A026367;
RT(this sequence without 1st 3 terms) = A026363. (End)
The diameter (longest path) of the n-cycle. - Cade Herron, Apr 14 2011
For n >= 3, a(n-1) is the number of two-color bracelets of n beads, three of them are black, having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
Pelesko (2004) refers erroneously to this sequence instead of A008619. - M. F. Hasler, Jul 19 2012
Number of degree 2 irreducible characters of the dihedral group of order 2(n+1). - Eric M. Schmidt, Feb 12 2013
For n >= 3 the sequence a(n-1) is the number of non-congruent regions with infinite area in the exterior of a regular n-gon with all diagonals drawn. See A217748. - Martin Renner, Mar 23 2013
a(n) is the number of partitions of 2n into exactly 2 even parts. a(n+1) is the number of partitions of 2n into exactly 2 odd parts. This just rephrases the comment of E. Deutsch above. - Wesley Ivan Hurt, Jun 08 2013
Number of the distinct rectangles and square in a regular n-gon is a(n/2) for even n and n >= 4. For odd n, such number is zero, see illustration in link. - Kival Ngaokrajang, Jun 25 2013
x-coordinate from the image of the point (0,-1) after n reflections across the lines y = n and y = x respectively (alternating so that one reflection is applied on each step): (0,-1) -> (0,1) -> (1,0) -> (1,2) -> (2,1) -> (2,3) -> ... . - Wesley Ivan Hurt, Jul 12 2013
a(n) is the number of partitions of 2n into exactly two distinct odd parts. a(n-1) is the number of partitions of 2n into exactly two distinct even parts, n > 0. - Wesley Ivan Hurt, Jul 21 2013
a(n) is the number of permutations of length n avoiding 213, 231 and 312, or avoiding 213, 312 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also a(n) is the number of different patterns of 2-color, 2-partition of n. - Ctibor O. Zizka, Nov 19 2014
Minimum in- and out-degree for a directed K_n (see link). - Jon Perry, Nov 22 2014
a(n) is also the independence number of the triangular graph T(n). - Luis Manuel Rivera Martínez, Mar 12 2015
For n >= 3, a(n+4) is the least positive integer m such that every m-element subset of {1,2,...,n} contains distinct i, j, k with i + j = k (equivalently, with i - j = k). - Rick L. Shepherd, Jan 24 2016
More generally, the ordinary generating function for the integers repeated k times is x^k/((1 - x)(1 - x^k)). - Ilya Gutkovskiy, Mar 21 2016
a(n) is the number of numbers of the form F(i)*F(j) between F(n+3) and F(n+4), where 2 < i < j and F = A000045 (Fibonacci numbers). - Clark Kimberling, May 02 2016
The arithmetic function v_2(n,2) as defined in A289187. - Robert Price, Aug 22 2017
a(n) is also the total domination number of the (n-3)-gear graph. - Eric W. Weisstein, Apr 07 2018
Consider the numbers 1, 2, ..., n; a(n) is the largest integer t such that these numbers can be arranged in a row so that all consecutive terms differ by at least t. Example: a(6) = a(7) = 3, because of respectively (4, 1, 5, 2, 6, 3) and (1, 5, 2, 6, 3, 7, 4) (see link BMO - Problem 2). - Bernard Schott, Mar 07 2020
a(n-1) is also the number of integer-sided triangles whose sides a < b < c are in arithmetic progression with a middle side b = n (see A307136). Example, for b = 4, there exists a(3) = 1 such triangle corresponding to Pythagorean triple (3, 4, 5). For the triples, miscellaneous properties and references, see A336750. - Bernard Schott, Oct 15 2020
For n >= 1, a(n-1) is the greatest remainder on division of n by any k in 1..n. - David James Sycamore, Sep 05 2021
Number of incongruent right triangles that can be formed from the vertices of a regular n-gon is given by a(n/2) for n even. For n odd such number is zero. For a regular n-gon, the number of incongruent triangles formed from its vertices is given by A069905(n). The number of incongruent acute triangles is given by A005044(n). The number of incongruent obtuse triangles is given by A008642(n-4) for n > 3 otherwise 0, with offset 0. - Frank M Jackson, Nov 26 2022
The inverse binomial transform is 0, 0, 1, -2, 4, -8, 16, -32, ... (see A122803). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
		

References

  • G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, P(n,2).
  • Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1989, page 77 (partitions of n into at most 2 parts).

Crossrefs

a(n+2) = A008619(n). See A008619 for more references.
A001477(n) = a(n+1)+a(n). A000035(n) = a(n+1)-A002456(n).
a(n) = A008284(n, 2), n >= 1.
Zero followed by the partial sums of A000035.
Column 2 of triangle A094953. Second row of A180969.
Partial sums: A002620. Other related sequences: A010872, A010873, A010874.
Cf. similar sequences of the integers repeated k times: A001477 (k = 1), this sequence (k = 2), A002264 (k = 3), A002265 (k = 4), A002266 (k = 5), A152467 (k = 6), A132270 (k = 7), A132292 (k = 8), A059995 (k = 10).
Cf. A289187, A139756 (binomial transf).

Programs

  • Haskell
    a004526 = (`div` 2)
    a004526_list = concatMap (\x -> [x, x]) [0..]
    -- Reinhard Zumkeller, Jul 27 2012
    
  • Magma
    [Floor(n/2): n in [0..100]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A004526 := n->floor(n/2); seq(floor(i/2),i=0..50);
  • Mathematica
    Table[(2n - 1)/4 + (-1)^n/4, {n, 0, 70}] (* Stefan Steinerberger, Apr 02 2006 *)
    f[n_] := If[OddQ[n], (n - 1)/2, n/2]; Array[f, 74, 0] (* Robert G. Wilson v, Apr 20 2012 *)
    With[{c=Range[0,40]},Riffle[c,c]] (* Harvey P. Dale, Aug 26 2013 *)
    CoefficientList[Series[x^2/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {0, 0, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Floor[Range[0, 40]/2] (* Eric W. Weisstein, Apr 07 2018 *)
  • Maxima
    makelist(floor(n/2),n,0,50); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=n\2 /* Jaume Oliver Lafont, Mar 25 2009 */
    
  • PARI
    x='x+O('x^100); concat([0, 0], Vec(x^2/((1+x)*(x-1)^2))) \\ Altug Alkan, Mar 21 2016
    
  • Python
    def a(n): return n//2
    print([a(n) for n in range(74)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    def a(n) : return( dimension_cusp_forms( Gamma0(2), 2*n+4) ); # Michael Somos, Jul 03 2014
    
  • Sage
    def a(n) : return( dimension_modular_forms( Gamma1(n+1), 1) ); # Michael Somos, Jul 03 2014
    

Formula

G.f.: x^2/((1+x)*(x-1)^2).
a(n) = floor(n/2).
a(n) = ceiling((n+1)/2). - Eric W. Weisstein, Jan 11 2024
a(n) = 1 + a(n-2).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(2*n) = a(2*n+1) = n.
a(n+1) = n - a(n). - Henry Bottomley, Jul 25 2001
For n > 0, a(n) = Sum_{i=1..n} (1/2)/cos(Pi*(2*i-(1-(-1)^n)/2)/(2*n+1)). - Benoit Cloitre, Oct 11 2002
a(n) = (2*n-1)/4 + (-1)^n/4; a(n+1) = Sum_{k=0..n} k*(-1)^(n+k). - Paul Barry, May 20 2003
E.g.f.: ((2*x-1)*exp(x) + exp(-x))/4. - Paul Barry, Sep 03 2003
G.f.: (1/(1-x)) * Sum_{k >= 0} t^2/(1-t^4) where t = x^2^k. - Ralf Stephan, Feb 24 2004
a(n+1) = A000120(A001045(n)). - Paul Barry, Jan 13 2005
a(n) = (n-(1-(-1)^n)/2)/2 = (1/2)*(n-|sin(n*Pi/2)|). Likewise: a(n) = (n-A000035(n))/2. Also: a(n) = Sum_{k=0..n} A000035(k). - Hieronymus Fischer, Jun 01 2007
The expression floor((x^2-1)/(2*x)) (x >= 1) produces this sequence. - Mohammad K. Azarian, Nov 08 2007; corrected by M. F. Hasler, Nov 17 2008
a(n+1) = A002378(n) - A035608(n). - Reinhard Zumkeller, Jan 27 2010
a(n+1) = A002620(n+1) - A002620(n) = floor((n+1)/2)*ceiling((n+1)/2) - floor(n^2/4). - Jonathan Vos Post, May 20 2010
For n >= 2, a(n) = floor(log_2(2^a(n-1) + 2^a(n-2))). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 24 2010
A001057(n-1) = (-1)^n*a(n), n > 0. - M. F. Hasler, Jul 19 2012
a(n) = A008615(n) + A002264(n). - Reinhard Zumkeller, Apr 28 2014
Euler transform of length 2 sequence [1, 1]. - Michael Somos, Jul 03 2014

Extensions

Partially edited by Joerg Arndt, Mar 11 2010, and M. F. Hasler, Jul 19 2012

A002061 Central polygonal numbers: a(n) = n^2 - n + 1.

Original entry on oeis.org

1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 463, 507, 553, 601, 651, 703, 757, 813, 871, 931, 993, 1057, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2551, 2653
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by the symbol
...2....
....P...
...2.n..
(P with three attachments).
Also the maximal number of 1's that an n X n invertible {0,1} matrix can have. (See Halmos for proof.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 07 2001
Maximal number of interior regions formed by n intersecting circles, for n >= 1. - Amarnath Murthy, Jul 07 2001
The terms are the smallest of n consecutive odd numbers whose sum is n^3: 1, 3 + 5 = 8 = 2^3, 7 + 9 + 11 = 27 = 3^3, etc. - Amarnath Murthy, May 19 2001
(n*a(n+1)+1)/(n^2+1) is the smallest integer of the form (n*k+1)/(n^2+1). - Benoit Cloitre, May 02 2002
For n >= 3, a(n) is also the number of cycles in the wheel graph W(n) of order n. - Sharon Sela (sharonsela(AT)hotmail.com), May 17 2002
Let b(k) be defined as follows: b(1) = 1 and b(k+1) > b(k) is the smallest integer such that Sum_{i=b(k)..b(k+1)} 1/sqrt(i) > 2; then b(n) = a(n) for n > 0. - Benoit Cloitre, Aug 23 2002
Drop the first three terms. Then n*a(n) + 1 = (n+1)^3. E.g., 7*1 + 1 = 8 = 2^3, 13*2 + 1 = 27 = 3^3, 21*3 + 1 = 64 = 4^3, etc. - Amarnath Murthy, Oct 20 2002
Arithmetic mean of next 2n - 1 numbers. - Amarnath Murthy, Feb 16 2004
The n-th term of an arithmetic progression with first term 1 and common difference n: a(1) = 1 -> 1, 2, 3, 4, 5, ...; a(2) = 3 -> 1, 3, ...; a(3) = 7 -> 1, 4, 7, ...; a(4) = 13 -> 1, 5, 9, 13, ... - Amarnath Murthy, Mar 25 2004
Number of walks of length 3 between any two distinct vertices of the complete graph K_{n+1} (n >= 1). Example: a(2) = 3 because in the complete graph ABC we have the following walks of length 3 between A and B: ABAB, ACAB and ABCB. - Emeric Deutsch, Apr 01 2004
Narayana transform of [1, 2, 0, 0, 0, ...] = [1, 3, 7, 13, 21, ...]. Let M = the infinite lower triangular matrix of A001263 and let V = the Vector [1, 2, 0, 0, 0, ...]. Then A002061 starting (1, 3, 7, ...) = M * V. - Gary W. Adamson, Apr 25 2006
The sequence 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, ... is the trajectory of 3 under repeated application of the map n -> n + 2 * square excess of n, cf. A094765.
Also n^3 mod (n^2+1). - Zak Seidov, Aug 31 2006
Also, omitting the first 1, the main diagonal of A081344. - Zak Seidov, Oct 05 2006
Ignoring the first ones, these are rectangular parallelepipeds with integer dimensions that have integer interior diagonals. Using Pythagoras: sqrt(a^2 + b^2 + c^2) = d, an integer; then this sequence: sqrt(n^2 + (n+1)^2 + (n(n+1))^2) = 2T_n + 1 is the first and most simple example. Problem: Are there any integer diagonals which do not satisfy the following general formula? sqrt((k*n)^2 + (k*(n+(2*m+1)))^2 + (k*(n*(n+(2*m+1)) + 4*T_m))^2) = k*d where m >= 0, k >= 1, and T is a triangular number. - Marco Matosic, Nov 10 2006
Numbers n such that a(n) is prime are listed in A055494. Prime a(n) are listed in A002383. All terms are odd. Prime factors of a(n) are listed in A007645. 3 divides a(3*k-1), 7 divides a(7*k-4) and a(7*k-2), 7^2 divides a(7^2*k-18) and a(7^2*k+19), 7^3 divides a(7^3*k-18) and a(7^3*k+19), 7^4 divides a(7^4*k+1048) and a(7^4*k-1047), 7^5 divides a(7^5*k+1354) and a(7^5*k-1353), 13 divides a(13*k-9) and a(13*k-3), 13^2 divides a(13^2*k+23) and a(13^2*k-22), 13^3 divides a(13^3*k+1037) and a(13^3*k-1036). - Alexander Adamchuk, Jan 25 2007
Complement of A135668. - Kieren MacMillan, Dec 16 2007
From William A. Tedeschi, Feb 29 2008: (Start)
Numbers (sorted) on the main diagonal of a 2n X 2n spiral. For example, when n=2:
.
7---8---9--10
| |
6 1---2 11
| | |
5---4---3 12
|
16--15--14--13
.
Cf. A137928. (End)
a(n) = AlexanderPolynomial[n] defined as Det[Transpose[S]-n S] where S is Seifert matrix {{-1, 1}, {0, -1}}. - Artur Jasinski, Mar 31 2008
Starting (1, 3, 7, 13, 21, ...) = binomial transform of [1, 2, 2, 0, 0, 0]; example: a(4) = 13 = (1, 3, 3, 1) dot (1, 2, 2, 0) = (1 + 6 + 6 + 0). - Gary W. Adamson, May 10 2008
Starting (1, 3, 7, 13, ...) = triangle A158821 * [1, 2, 3, ...]. - Gary W. Adamson, Mar 28 2009
Starting with offset 1 = triangle A128229 * [1,2,3,...]. - Gary W. Adamson, Mar 26 2009
a(n) = k such that floor((1/2)*(1 + sqrt(4*k-3))) + k = (n^2+1), that is A000037(a(n)) = A002522(n) = n^2 + 1, for n >= 1. - Jaroslav Krizek, Jun 21 2009
For n > 0: a(n) = A170950(A002522(n-1)), A170950(a(n)) = A174114(n), A170949(a(n)) = A002522(n-1). - Reinhard Zumkeller, Mar 08 2010
From Emeric Deutsch, Sep 23 2010: (Start)
a(n) is also the Wiener index of the fan graph F(n). The fan graph F(n) is defined as the graph obtained by joining each node of an n-node path graph with an additional node. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of the graph F(n) is (1/2)t[(n-1)(n-2)t + 2(2n-1)]. Example: a(2)=3 because the corresponding fan graph is a cycle on 3 nodes (a triangle), having distances 1, 1, and 1.
(End)
For all elements k = n^2 - n + 1 of the sequence, sqrt(4*(k-1)+1) is an integer because 4*(k-1) + 1 = (2*n-1)^2 is a perfect square. Building the intersection of this sequence with A000225, k may in addition be of the form k = 2^x - 1, which happens only for k = 1, 3, 7, 31, and 8191. [Proof: Still 4*(k-1)+1 = 2^(x+2) - 7 must be a perfect square, which has the finite number of solutions provided by A060728: x = 1, 2, 3, 5, or 13.] In other words, the sequence A038198 defines all elements of the form 2^x - 1 in this sequence. For example k = 31 = 6*6 - 6 + 1; sqrt((31-1)*4+1) = sqrt(121) = 11 = A038198(4). - Alzhekeyev Ascar M, Jun 01 2011
a(n) such that A002522(n-1) * A002522(n) = A002522(a(n)) where A002522(n) = n^2 + 1. - Michel Lagneau, Feb 10 2012
Left edge of the triangle in A214661: a(n) = A214661(n, 1), for n > 0. - Reinhard Zumkeller, Jul 25 2012
a(n) = A215630(n, 1), for n > 0; a(n) = A215631(n-1, 1), for n > 1. - Reinhard Zumkeller, Nov 11 2012
Sum_{n > 0} arccot(a(n)) = Pi/2. - Franz Vrabec, Dec 02 2012
If you draw a triangle with one side of unit length and one side of length n, with an angle of Pi/3 radians between them, then the length of the third side of the triangle will be the square root of a(n). - Elliott Line, Jan 24 2013
a(n+1) is the number j such that j^2 = j + m + sqrt(j*m), with corresponding number m given by A100019(n). Also: sqrt(j*m) = A027444(n) = n * a(n+1). - Richard R. Forberg, Sep 03 2013
Let p(x) the interpolating polynomial of degree n-1 passing through the n points (n,n) and (1,1), (2,1), ..., (n-1,1). Then p(n+1) = a(n). - Giovanni Resta, Feb 09 2014
The number of square roots >= sqrt(n) and < n+1 (n >= 0) gives essentially the same sequence, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, ... . - Michael G. Kaarhus, May 21 2014
For n > 1: a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+1] X [n+1] chessboard. Specifically, this will be a lone queen of one color placed in any position on the perimeter of the board, facing an opponent's "army" of size a(n)-1 == A002378(n-1). - Bob Selcoe, Feb 07 2015
a(n+1) is, for n >= 1, the number of points as well as the number of lines of a finite projective plane of order n (cf. Hughes and Piper, 1973, Theorem 3.5., pp. 79-80). For n = 3, a(4) = 13, see the 'Finite example' in the Wikipedia link, section 2.3, for the point-line matrix. - Wolfdieter Lang, Nov 20 2015
Denominators of the solution to the generalization of the Feynman triangle problem. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The numerators of the ratio of the areas is given by A000290 with an offset of 2. [Cook & Wood, 2004.] - Joe Marasco, Feb 20 2017
n^2 equal triangular tiles with side lengths 1 X 1 X 1 may be put together to form an n X n X n triangle. For n>=2 a(n-1) is the number of different 2 X 2 X 2 triangles being contained. - Heinrich Ludwig, Mar 13 2017
For n >= 0, the continued fraction [n, n+1, n+2] = (n^3 + 3n^2 + 4n + 2)/(n^2 + 3n + 3) = A034262(n+1)/a(n+2) = n + (n+2)/a(n+2); e.g., [2, 3, 4] = A034262(3)/a(4) = 30/13 = 2 + 4/13. - Rick L. Shepherd, Apr 06 2017
Starting with b(1) = 1 and not allowing the digit 0, let b(n) = smallest nonnegative integer not yet in the sequence such that the last digit of b(n-1) plus the first digit of b(n) is equal to k for k = 1, ..., 9. This defines 9 finite sequences, each of length equal to a(k), k = 1, ..., 9. (See A289283-A289287 for the cases k = 5..9.) For k = 10, the sequence is infinite (A289288). For example, for k = 4, b(n) = 1,3,11,31,32,2,21,33,12,22,23,13,14. These terms can be ordered in the following array of size k*(k-1)+1:
1 2 3
21 22 23
31 32 33
11 12 13 14
.
The sequence ends with the term 1k, which lies outside the rectangular array and gives the term +1 (see link).- Enrique Navarrete, Jul 02 2017
The central polygonal numbers are the delimiters (in parenthesis below) when you write the natural numbers in groups of odd size 2*n+1 starting with the group {2} of size 1: (1) 2 (3) 4,5,6 (7) 8,9,10,11,12 (13) 14,15,16,17,18,19,20 (21) 22,23,24,25,26,27,28,29,30 (31) 32,33,34,35,36,37,38,39,40,41,42 (43) ... - Enrique Navarrete, Jul 11 2017
Also the number of (non-null) connected induced subgraphs in the n-cycle graph. - Eric W. Weisstein, Aug 09 2017
Since (n+1)^2 - (n+1) + 1 = n^2 + n + 1 then from 7 onwards these are also exactly the numbers that are represented as 111 in all number bases: 111(2)=7, 111(3)=13, ... - Ron Knott, Nov 14 2017
Number of binary 2 X (n-1) matrices such that each row and column has at most one 1. - Dmitry Kamenetsky, Jan 20 2018
Observed to be the squares visited by bishop moves on a spirally numbered board and moving to the lowest available unvisited square at each step, beginning at the second term (cf. A316667). It should be noted that the bishop will only travel to squares along the first diagonal of the spiral. - Benjamin Knight, Jan 30 2019
From Ed Pegg Jr, May 16 2019: (Start)
Bound for n-subset coverings. Values in A138077 covered by difference sets.
C(7,3,2), {1,2,4}
C(13,4,2), {0,1,3,9}
C(21,5,2), {3,6,7,12,14}
C(31,6,2), {1,5,11,24,25,27}
C(43,7,2), existence unresolved
C(57,8,2), {0,1,6,15,22,26,45,55}
Next unresolved cases are C(111,11,2) and C(157,13,2). (End)
"In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57." (cited from Lubachevsky, Graham link, Introduction). - Rainer Rosenthal, May 27 2020
From Bernard Schott, Dec 31 2020: (Start)
For n >= 1, a(n) is the number of solutions x in the interval 1 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(3) = 7 solutions in the interval [1, 3] are 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This sequence is the answer to the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see link B.M.O 1984. and Gardiner reference). (End)
Called "Hogben numbers" after the British zoologist, statistician and writer Lancelot Thomas Hogben (1895-1975). - Amiram Eldar, Jun 24 2021
Minimum Wiener index of 2-degenerate graphs with n+1 vertices (n>0). A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices. The extremal graphs are maximal 2-degenerate graphs with diameter at most 2. - Allan Bickle, Oct 14 2022
a(n) is the number of parking functions of size n avoiding the patterns 123, 213, and 312. - Lara Pudwell, Apr 10 2023
Repeated iteration of a(k) starting with k=2 produces Sylvester's sequence, i.e., A000058(n) = a^n(2), where a^n is the n-th iterate of a(k). - Curtis Bechtel, Apr 04 2024
a(n) is the maximum number of triangles that can be traversed by starting from a triangle and moving to adjacent triangles via an edge, without revisiting any triangle, in an n X n X n equilateral triangular grid made up of n^2 unit equilateral triangles. - Kiran Ananthpur Bacche, Jan 16 2025

Examples

			G.f. = 1 + x + 3*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 31*x^6 + 43*x^7 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 2007, page 160.
  • Anthony Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 4 pp. 64 and 173 (1984).
  • Paul R. Halmos, Linear Algebra Problem Book, MAA, 1995, pp. 75-6, 242-4.
  • Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 87.
  • Daniel R. Hughes and Frederick Charles Piper, Projective Planes, Springer, 1973.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A010000 (minimum Weiner index of 3-degenerate graphs).

Programs

  • GAP
    List([0..50], n->n^2-n+1); # Muniru A Asiru, May 27 2018
  • Haskell
    a002061 n = n * (n - 1) + 1  -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [ n^2 - n + 1 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 12 2014
    
  • Maple
    A002061 := proc(n)
        numtheory[cyclotomic](6,n) ;
    end proc:
    seq(A002061(n), n=0..20); # R. J. Mathar, Feb 07 2014
  • Mathematica
    FoldList[#1 + #2 &, 1, 2 Range[0, 50]] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{3, -3, 1}, {1, 1, 3}, 60] (* Harvey P. Dale, May 25 2011 *)
    Table[n^2 - n + 1, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 12 2014 *)
    CoefficientList[Series[(1 - 2x + 3x^2)/(1 - x)^3, {x, 0, 52}], x] (* Robert G. Wilson v, Feb 18 2018 *)
    Cyclotomic[6, Range[0, 100]] (* Paolo Xausa, Feb 09 2024 *)
  • Maxima
    makelist(n^2 - n + 1,n,0,55); /* Martin Ettl, Oct 16 2012 */
    
  • PARI
    a(n) = n^2 - n + 1
    

Formula

G.f.: (1 - 2*x + 3*x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = -(n-5)*a(n-1) + (n-2)*a(n-2).
a(n) = Phi_6(n) = Phi_3(n-1), where Phi_k is the k-th cyclotomic polynomial.
a(1-n) = a(n). - Michael Somos, Sep 04 2006
a(n) = a(n-1) + 2*(n-1) = 2*a(n-1) - a(n-2) + 2 = 1+A002378(n-1) = 2*A000124(n-1) - 1. - Henry Bottomley, Oct 02 2000 [Corrected by N. J. A. Sloane, Jul 18 2010]
a(n) = A000217(n) + A000217(n-2) (sum of two triangular numbers).
From Paul Barry, Mar 13 2003: (Start)
x*(1+x^2)/(1-x)^3 is g.f. for 0, 1, 3, 7, 13, ...
a(n) = 2*C(n, 2) + C(n-1, 0).
E.g.f.: (1+x^2)*exp(x). (End)
a(n) = ceiling((n-1/2)^2). - Benoit Cloitre, Apr 16 2003. [Hence the terms are about midway between successive squares and so (except for 1) are not squares. - N. J. A. Sloane, Nov 01 2005]
a(n) = 1 + Sum_{j=0..n-1} (2*j). - Xavier Acloque, Oct 08 2003
a(n) = floor(t(n^2)/t(n)), where t(n) = A000217(n). - Jon Perry, Feb 14 2004
a(n) = leftmost term in M^(n-1) * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 0 1 2 / 0 0 1]. E.g., a(6) = 31 since M^5 * [1 1 1] = [31 11 1]. - Gary W. Adamson, Nov 11 2004
a(n+1) = n^2 + n + 1. a(n+1)*a(n) = (n^6-1)/(n^2-1) = n^4 + n^2 + 1 = a(n^2+1) (a product of two consecutive numbers from this sequence belongs to this sequence). (a(n+1) + a(n))/2 = n^2 + 1. (a(n+1) - a(n))/2 = n. a((a(n+1) + a(n))/2) = a(n+1)*a(n). - Alexander Adamchuk, Apr 13 2006
a(n+1) is the numerator of ((n + 1)! + (n - 1)!)/ n!. - Artur Jasinski, Jan 09 2007
a(n) = A132111(n-1, 1), for n > 1. - Reinhard Zumkeller, Aug 10 2007
a(n) = Det[Transpose[{{-1, 1}, {0, -1}}] - n {{-1, 1}, {0, -1}}]. - Artur Jasinski, Mar 31 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A176271(n,1) for n > 0. - Reinhard Zumkeller, Apr 13 2010
a(n) == 3 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = (n-1)^2 + (n-1) + 1 = 111 read in base n-1 (for n > 2). - Jason Kimberley, Oct 18 2011
a(n) = A228643(n, 1), for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = sqrt(A058031(n)). - Richard R. Forberg, Sep 03 2013
G.f.: 1 / (1 - x / (1 - 2*x / (1 + x / (1 - 2*x / (1 + x))))). - Michael Somos, Apr 03 2014
a(n) = A243201(n - 1) / A003215(n - 1), n > 0. - Mathew Englander, Jun 03 2014
For n >= 2, a(n) = ceiling(4/(Sum_{k = A000217(n-1)..A000217(n) - 1}, 1/k)). - Richard R. Forberg, Aug 17 2014
A256188(a(n)) = 1. - Reinhard Zumkeller, Mar 26 2015
Sum_{n>=0} 1/a(n) = 1 + Pi*tanh(Pi*sqrt(3)/2)/sqrt(3) = 2.79814728056269018... . - Vaclav Kotesovec, Apr 10 2016
a(n) = A101321(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A000217(n-1) + A000124(n-1), n > 0. - Torlach Rush, Aug 06 2018
Sum_{n>=1} arctan(1/a(n)) = Pi/2. - Amiram Eldar, Nov 01 2020
Sum_{n=1..M} arctan(1/a(n)) = arctan(M). - Lee A. Newberg, May 08 2024
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)*sech(sqrt(3)*Pi/2).
Product_{n>=2} (1 - 1/a(n)) = Pi*sech(sqrt(3)*Pi/2). (End)
For n > 1, sqrt(a(n)+sqrt(a(n)-sqrt(a(n)+sqrt(a(n)- ...)))) = n. - Diego Rattaggi, Apr 17 2021
a(n) = (1 + (n-1)^4 + n^4) / (1 + (n-1)^2 + n^2) [see link B.M.O. 2007 and Steve Dinh reference]. - Bernard Schott, Dec 27 2021

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
Partially edited by Bruno Berselli, Dec 19 2013

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A016742 Even squares: a(n) = (2*n)^2.

Original entry on oeis.org

0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0

Views

Author

Keywords

Comments

4 times the squares.
Number of edges in the complete bipartite graph of order 5n, K_{n,4n} - Roberto E. Martinez II, Jan 07 2002
It is conjectured (I think) that a regular Hadamard matrix of order n exists iff n is an even square (cf. Seberry and Yamada, Th. 10.11). A Hadamard matrix is regular if the sum of the entries in each row is the same. - N. J. A. Sloane, Nov 13 2008
Sequence arises from reading the line from 0, in the direction 0, 16, ... and the line from 4, in the direction 4, 36, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
The entries from a(1) on can be interpreted as pair sums of (2, 2), (8, 8), (18, 18), (32, 32) etc. that arise from a re-arrangement of the subshell orbitals in the periodic table of elements. 8 becomes the maximum number of electrons in the (2s,2p) or (3s,3p) orbitals, 18 the maximum number of electrons in (4s,3d,4p) or (5s,3d,5p) shells, for example. - Julio Antonio Gutiérrez Samanez, Jul 20 2008
The first two terms of the sequence (n=1, 2) give the numbers of chemical elements using only n types of atomic orbitals, i.e., there are a(1)=4 elements (H,He,Li,Be) where electrons reside only on s-orbitals, there are a(2)=16 elements (B,C,N,O,F,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca) where electrons reside only on s- and p-orbitals. However, after that, there is 37 (which is one more than a(3)=36) elements (from Sc, Scandium, atomic number 21 to La, Lanthanum, atomic number 57) where electrons reside only on s-, p- and d-orbitals. This is because Lanthanum (with the electron configuration [Xe]5d^1 6s^2) is an exception to the Aufbau principle, which would predict that its electron configuration is [Xe]4f^1 6s^2. - Antti Karttunen, Aug 14 2008.
Number of cycles of length 3 in the king's graph associated with an (n+1) X (n+1) chessboard. - Anton Voropaev (anton.n.voropaev(AT)gmail.com), Feb 01 2009
a(n+1) is the molecular topological index of the n-star graph S_n. - Eric W. Weisstein, Jul 11 2011
a(n) is the sum of two consecutives odd numbers 2*n^2-1 and 2*n^2+1 and the difference of two squares (n^2+1)^2 - (n^2-1)^2. - Pierre CAMI, Jan 02 2012
For n > 3, a(n) is the area of the irregular quadrilateral created by the points ((n-4)*(n-3)/2,(n-3)*(n-2)/2), ((n-2)*(n-1)/2,(n-1)*n/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+3)*(n+4)/2,(n+2)*(n+3)/2). - J. M. Bergot, May 27 2014
Number of terms less than 10^k: 1, 2, 5, 16, 50, 159, 500, 1582, 5000, 15812, 50000, 158114, 500000, ... - Muniru A Asiru, Jan 28 2018
Right-hand side of the binomial coefficient identity Sum_{k = 0..2*n} (-1)^(k+1)* binomial(2*n,k)*binomial(2*n + k,k)*(2*n - k) = a(n). - Peter Bala, Jan 12 2022

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
  • W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. sequences listed in A254963.
Other n X n king graph cycle counts: A288918 (4-cycles), A288919 (5-cycles), A288920 (6-cycles).
Cf. A016813.

Programs

Formula

O.g.f.: 4*x*(1+x)/(1-x)^3. - R. J. Mathar, Jul 28 2008
a(n) = A000290(n)*4 = A001105(n)*2. - Omar E. Pol, May 21 2008
a(n) = A155955(n,2) for n > 1. - Reinhard Zumkeller, Jan 31 2009
Sum_{n>=1} 1/a(n) = (1/4)*Pi^2/6 = Pi^2/24. - Ant King, Nov 04 2009
a(n) = a(n-1) + 8*n - 4 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 16. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+3). - Philippe Deléham, Mar 26 2013
Pi = 2*Product_{n>=1} (1 + 1/(a(n)-1)). - Adriano Caroli, Aug 04 2013
Pi = Sum_{n>=0} 8/(a(2n+1)-1). - Adriano Caroli, Aug 06 2013
E.g.f.: exp(x)*(4x^2 + 4x). - Geoffrey Critzer, Oct 07 2013
a(n) = A000384(n) + A014105(n). - Bruce J. Nicholson, Nov 11 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 (A245058). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/2)/(Pi/2) (A308716).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/2)/(Pi/2) = 2/Pi (A060294). (End)
a(n) = A016754(n) - A016813(n). - Leo Tavares, Feb 24 2022

Extensions

More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006

A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).

Original entry on oeis.org

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0

Views

Author

Keywords

Comments

Write 0, 1, 2, ... in a square spiral, with 0 at the origin and 1 immediately below it; sequence gives numbers on the negative y-axis (see Example section).
Number of divisors of 48^(n-1) for n > 0. - J. Lowell, Aug 30 2008
a(n) is the Wiener index of the graph obtained by connecting two copies of the complete graph K_n by an edge (for n = 3, approximately: |>-<|). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 20 2010
This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
For n > 0: right edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012
Sequence found by reading the line from 0, in the direction 0, 10, ... and the parallel line from 1, in the direction 1, 27, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Jul 18 2012
Partial sums give A007585. - Omar E. Pol, Jan 15 2013
This is also a star pentagonal number: a(n) = A000326(n) + 5*A000217(n-1). - Luciano Ancora, Mar 28 2015
Also the number of undirected paths in the n-sunlet graph. - Eric W. Weisstein, Sep 07 2017
After 0, a(n) is the sum of 2*n consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
Number of corona of an H0 hexagon with a T(n) triangle. - Craig Knecht, Dec 13 2024

Examples

			On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
  99  64--65--66--67--68--69--70--71--72
   |   |                               |
  98  63  36--37--38--39--40--41--42  73
   |   |   |                       |   |
  97  62  35  16--17--18--19--20  43  74
   |   |   |   |               |   |   |
  96  61  34  15   4---5---6  21  44  75
   |   |   |   |   |       |   |   |   |
  95  60  33  14   3  *0*  7  22  45  76
   |   |   |   |   |   |   |   |   |   |
  94  59  32  13   2--*1*  8  23  46  77
   |   |   |   |           |   |   |   |
  93  58  31  12--11-*10*--9  24  47  78
   |   |   |                   |   |   |
  92  57  30--29--28-*27*-26--25  48  79
   |   |                           |   |
  91  56--55--54--53-*52*-51--50--49  80
   |                                   |
  90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m = 2). Partial sums of A017077.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

  • Magma
    [4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
    
  • Maple
    A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
    Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
    PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=4*n^2-3*n
    
  • Python
    a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 8, y + 8
    A001107 = aList()
    print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = A033954(-n) = A074377(2*n-1).
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
a(n) = A003215(n-1) + A000290(n) - 1. - Leo Tavares, Jul 23 2022

A002265 Nonnegative integers repeated 4 times.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0

Views

Author

Keywords

Comments

For n>=1 and i=sqrt(-1) let F(n) the n X n matrix of the Discrete Fourier Transform (DFT) whose element (j,k) equals exp(-2*Pi*i*(j-1)*(k-1)/n)/sqrt(n). The multiplicities of the four eigenvalues 1, i, -1, -i of F(n) are a(n+4), a(n-1), a(n+2), a(n+1), hence a(n+4) + a(n-1) + a(n+2) + a(n+1) = n for n>=1. E.g., the multiplicities of the eigenvalues 1, i, -1, -i of the DFT-matrix F(4) are a(8)=2, a(3)=0, a(6)=1, a(5)=1, summing up to 4. - Franz Vrabec, Jan 21 2005
Complement of A010873, since A010873(n)+4*a(n)=n. - Hieronymus Fischer, Jun 01 2007
For even values of n, a(n) gives the number of partitions of n into exactly two parts with both parts even. - Wesley Ivan Hurt, Feb 06 2013
a(n-4) counts number of partitions of (n) into parts 1 and 4. For example a(11) = 3 with partitions (44111), (41111111), (11111111111). - David Neil McGrath, Dec 04 2014
a(n-4) counts walks (closed) on the graph G(1-vertex; 1-loop, 4-loop) where order of loops is unimportant. - David Neil McGrath, Dec 04 2014
Number of partitions of n into 4 parts whose smallest 3 parts are equal. - Wesley Ivan Hurt, Jan 17 2021

References

  • V. Cizek, Discrete Fourier Transforms and their Applications, Adam Hilger, Bristol 1986, p. 61.

Crossrefs

Zero followed by partial sums of A011765.
Partial sums: A130519. Other related sequences: A004526, A010872, A010873, A010874.
Third row of A180969.

Programs

Formula

a(n) = floor(n/4), n>=0;
G.f.: (x^4)/((1-x)*(1-x^4)).
a(n) = (2*n-(3-(-1)^n-2*(-1)^floor(n/2)))/8; also a(n) = (2*n-(3-(-1)^n-2*sin(Pi/4*(2*n+1+(-1)^n))))/8 = (n-A010873(n))/4. - Hieronymus Fischer, May 29 2007
a(n) = (1/4)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2). - Hieronymus Fischer, Jul 04 2007
a(n) = floor((n^4-1)/4*n^3) (n>=1); a(n) = floor((n^4-n^3)/(4*n^3-3*n^2)) (n>=1). - Mohammad K. Azarian, Nov 08 2007 and Aug 01 2009
For n>=4, a(n) = floor( log_4( 4^a(n-1) + 4^a(n-2) + 4^a(n-3) + 4^a(n-4) ) ). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 26 2010
a(n) = A173562(n)-A000290(n); a(n+2) = A035608(n)-A173562(n). - Reinhard Zumkeller, Feb 21 2010
a(n+1) = A140201(n) - A057353(n+1). - Reinhard Zumkeller, Feb 26 2011
a(n) = ceiling((n-3)/4), n >= 0. - Wesley Ivan Hurt, Jun 01 2013
a(n) = (2*n + (-1)^n + 2*sin(Pi*n/2) + 2*cos(Pi*n/2) - 3)/8. - Todd Silvestri, Oct 27 2014
E.g.f.: (x/4 - 3/8)*exp(x) + exp(-x)/8 + (sin(x)+cos(x))/4. - Robert Israel, Oct 30 2014
a(n) = a(n-1) + a(n-4) - a(n-5) with initial values a(3)=0, a(4)=1, a(5)=1, a(6)=1, a(7)=1. - David Neil McGrath, Dec 04 2014
a(n) = A004526(A004526(n)). - Bruno Berselli, Jul 01 2016
From Guenther Schrack, May 03 2019: (Start)
a(n) = (2*n - 3 + (-1)^n + 2*(-1)^(n*(n-1)/2))/8.
a(n) = a(n-4) + 1, a(k)=0 for k=0,1,2,3, for n > 3. (End)

A002939 a(n) = 2*n*(2*n-1).

Original entry on oeis.org

0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a spiral; sequence gives numbers on one of 4 diagonals (see Example section).
For n>1 this is the Engel expansion of cosh(1), A118239. - Benoit Cloitre, Mar 03 2002
a(n) = A125199(n,n) for n>0. - Reinhard Zumkeller, Nov 24 2006
Central terms of the triangle in A195437: a(n+1) = A195437(2*n,n). - Reinhard Zumkeller, Nov 23 2011
For n>2, the terms represent the sums of those primitive Pythagorean triples with hypotenuse (H) one unit longer than the longest side (L), or H = L + 1. - Richard R. Forberg, Jun 09 2015
For n>1, a(n) is the perimeter of a Pythagorean triangle with an odd leg 2*n-1. - Agola Kisira Odero, Apr 26 2016
From Rigoberto Florez, Nov 07 2020 : (Start)
A338109(n)/a(n+1) is the Kirchhoff index of the join of the disjoint union of two complete graphs on n vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 1 vertices with labels 0..3*n and with i and j adjacent iff iff i+j> 0 mod 3.
A338588(n)/a(n+1) is the Kirchhoff index of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 2 vertices with labels 0..3*n+1 and with i and j adjacent iff i+j> 0 mod 3.
These graphs are cographs. (End)
a(n), n>=1, is the number of paths of minimum length (length=2) from the origin to the cross polytope of size 2 in Z^n (column 2 in A371064). - Shel Kaphan, Mar 09 2024

Examples

			G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3  *0*  7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13  *2*--1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31 *12*-11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57 *30*-29--28--27--26--25  48  79
    |   |                           |   |
   91 *56*-55--54--53--52--51--50--49  80
    |                                   |
  *90*-89--88--87--86--85--84--83--82--81
.
[Edited by _Jon E. Schoenfield_, Jan 01 2017]
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013
Cf. A017089 (first differences), A268684 (partial sums), A010050 (partial products).
Cf. A371064.

Programs

Formula

Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).
Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003
a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008
From R. J. Mathar, Apr 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(1+3*x)/(1-x)^3. (End)
a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010
a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013
Product_{k=1..n} a(k) = (2n)! = A010050(n). - Tony Foster III, Sep 06 2015
E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016
a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017
0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - log(2)/2. - Amiram Eldar, Jul 31 2020

A033996 8 times triangular numbers: a(n) = 4*n*(n+1).

Original entry on oeis.org

0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Write 0, 1, 2, ... in a clockwise spiral; sequence gives numbers on one of 4 diagonals.
Also, least m > n such that T(m)*T(n) is a square and more precisely that of A055112(n). {T(n) = A000217(n)}. - Lekraj Beedassy, May 14 2004
Also sequence found by reading the line from 0, in the direction 0, 8, ... and the same line from 0, in the direction 0, 24, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Axis perpendicular to A195146 in the same spiral. - Omar E. Pol, Sep 18 2011
Number of diagonals with length sqrt(5) in an (n+1) X (n+1) square grid. Every 1 X 2 rectangle has two such diagonals. - Wesley Ivan Hurt, Mar 25 2015
Imagine a board made of squares (like a chessboard), one of whose squares is completely surrounded by square-shaped layers made of adjacent squares. a(n) is the total number of squares in the first to n-th layer. a(1) = 8 because there are 8 neighbors to the unit square; adding them gives a 3 X 3 square. a(2) = 24 = 8 + 16 because we need 16 more squares in the next layer to get a 5 X 5 square: a(n) = (2*n+1)^2 - 1 counting the (2n+1) X (2n+1) square minus the central square. - R. J. Cano, Sep 26 2015
The three platonic solids (the simplex, hypercube, and cross-polytope) with unit side length in n dimensions all have rational volume if and only if n appears in this sequence, after 0. - Brian T Kuhns, Feb 26 2016
The number of active (ON, black) cells in the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood. - Robert Price, May 19 2016
The square root of a(n), n>0, has continued fraction [2n; {1,4n}] with whole number part 2n and periodic part {1,4n}. - Ron Knott, May 11 2017
Numbers k such that k+1 is a square and k is a multiple of 4. - Bruno Berselli, Sep 28 2017
a(n) is the number of vertices of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch, May 13 2018
a(n) is the number of vertices in conjoined n X n octagons which are arranged into a square array, a.k.a. truncated square tiling. - Donghwi Park, Dec 20 2020
a(n-2) is the number of ways to place 3 adjacent marks in a diagonal, horizontal, or vertical row on an n X n tic-tac-toe grid. - Matej Veselovac, May 28 2021

Examples

			Spiral with 0, 8, 24, 48, ... along lower right diagonal:
.
  36--37--38--39--40--41--42
   |                       |
  35  16--17--18--19--20  43
   |   |               |   |
  34  15   4---5---6  21  44
   |   |   |       |   |   |
  33  14   3   0   7  22  45
   |   |   |   | \ |   |   |
  32  13   2---1   8  23  46
   |   |           | \ |   |
  31  12--11--10---9  24  47
   |                   | \ |
  30--29--28--27--26--25  48
                            \
[Reformatted by _Jon E. Schoenfield_, Dec 25 2016]
		

References

  • Stuart M. Ellerstein, J. Recreational Math. 29 (3) 188, 1998.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A000217, A016754, A002378, A024966, A027468, A028895, A028896, A045943, A046092, A049598, A088538, A124080, A008590 (first differences), A130809 (partial sums).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Magma
    [ 4*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
  • Maple
    seq(8*binomial(n+1, 2), n=0..46); # Zerinvary Lajos, Nov 24 2006
    [seq((2*n+1)^2-1, n=0..46)];
  • Mathematica
    Table[(2n - 1)^2 - 1, {n, 50}] (* Alonso del Arte, Mar 31 2013 *)
  • PARI
    nsqm1(n) = { forstep(x=1,n,2, y = x*x-1; print1(y, ", ") ) }
    

Formula

a(n) = 4*n^2 + 4*n = (2*n+1)^2 - 1.
G.f.: 8*x/(1-x)^3.
a(n) = A016754(n) - 1 = 2*A046092(n) = 4*A002378(n). - Lekraj Beedassy, May 25 2004
a(n) = A049598(n) - A046092(n); a(n) = A124080(n) - A002378(n). - Zerinvary Lajos, Mar 06 2007
a(n) = 8*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = A005843(n) * A163300(n). - Juri-Stepan Gerasimov, Jul 26 2009
a(n) = a(n-1) + 8*n (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
For n > 0, a(n) = A058031(n+1) - A062938(n-1). - Charlie Marion, Apr 11 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Mar 25 2015
a(n) = A000578(n+1) - A152618(n). - Bui Quang Tuan, Apr 01 2015
a(n) - a(n-1) = A008590(n), n > 0. - Altug Alkan, Sep 26 2015
From Ilya Gutkovskiy, May 19 2016: (Start)
E.g.f.: 4*x*(2 + x)*exp(x).
Sum_{n>=1} 1/a(n) = 1/4. (End)
Product_{n>=1} a(n)/A016754(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A056220(n) + A056220(n+1). - Bruce J. Nicholson, May 29 2017
sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^2. - Seiichi Manyama, Dec 23 2018
a(n)*a(n+k) + 4*k^2 = m^2 where m = (a(n) + a(n+k))/2 - 2*k^2; for k=1, m = 4*n^2 + 8*n + 2 = A060626(n). - Ezhilarasu Velayutham, May 22 2019
Sum_{n>=1} (-1)^n/a(n) = 1/4 - log(2)/2. - Vaclav Kotesovec, Dec 21 2020
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(4/Pi)*cos(Pi/sqrt(2)).
Product_{n>=1} (1 + 1/a(n)) = 4/Pi (A088538). (End)

A042948 Numbers congruent to 0 or 1 (mod 4).

Original entry on oeis.org

0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108
Offset: 0

Views

Author

Keywords

Comments

Maximum number of squares attacked by a bishop on an (n + 1) X (n + 1) chessboard. - Stewart Gordon, Mar 23 2001
Maximum vertex degree of the (n + 1) X (n + 1) bishop graph and black bishop graph. - Eric W. Weisstein, Jun 26 2017
Also number of squares attacked by a bishop on a toroidal chessboard. - Diego Torres (torresvillarroel(AT)hotmail.com), May 30 2001
Numbers n such that {1, 2, 3, ..., n-1, n} is a perfect Skolem set. - Emeric Deutsch, Nov 24 2006
The number of terms which lie on the principal diagonals of an n X n square spiral. - William A. Tedeschi, Mar 02 2008
Possible nonnegative discriminants of quadratic equation a*x^2 + b*x + c or discriminants of binary quadratic forms a*x^2 + b*x*y + c^y^2. - Artur Jasinski, Apr 28 2008
A133872(a(n)) = 1; complement of A042964. - Reinhard Zumkeller, Oct 03 2008
Partial sums are A035608. - Jaroslav Krizek, Dec 18 2009 [corrected by Werner Schulte, Dec 04 2023]
Nonnegative m for which floor(k*m/4) = k*floor(m/4), where k = 2 or 3. Example: 13 is in the sequence because floor(2*13/4) = 2*floor(13/4), and also floor(3*13/4) = 3*floor(13/4). - Bruno Berselli, Dec 09 2015
Also number of maximal cliques in the n X n white bishop graph. - Eric W. Weisstein, Dec 01 2017
The offset should have been 1. - Jianing Song, Oct 06 2018
Numbers k for which the binomial coefficient C(k,2) is even. - Tanya Khovanova, Oct 20 2018
Numbers m such that there exists a permutation (x(1), x(2), ..., x(m)) with all absolute differences |x(k) - k| distinct. - Jukka Kohonen, Oct 02 2021
Numbers m such that there exists a multiset of integers whose size is m, and sum and product are both -m. - Yifan Xie, Mar 25 2024

Crossrefs

Programs

  • Magma
    [n: n in [0..150]|n mod 4 in {0, 1}]; // Vincenzo Librandi, Dec 09 2015
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+4 od: seq(a[n], n=0..54); # Zerinvary Lajos, Mar 16 2008
  • Mathematica
    Select[Range[0, 150], Or[Mod[#, 4] == 0, Mod[#, 4] == 1] &] (* Vincenzo Librandi, Dec 09 2015 *)
    Table[(4 n - 5 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    LinearRecurrence[{1, 1, -1}, {1, 4, 5}, {0, 20}] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[x (1 + 3 x)/((-1 + x)^2 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    {#, # + 1} & /@ (4 Range[0, 40]) // Flatten (* Harvey P. Dale, Jan 15 2024 *)
  • Maxima
    makelist(-1/2+1/2*(-1)^n+2*n, n, 0, 60); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=2*n-n%2;
    
  • PARI
    concat(0, Vec(x*(1+3*x)/((1+x)*(1-x)^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    

Formula

a(n) = A042963(n+1) - 1. [Corrected by Jianing Song, Oct 06 2018]
From Michael Somos, Jan 12 2000: (Start)
G.f.: x*(1 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = a(n-1) + 2 + (-1)^n. (End)
a(n) = 4*n - a(n-1) - 3 with a(0) = 0. - Vincenzo Librandi, Nov 17 2010
a(n) = Sum_{k>=0} A030308(n,k)*A151821(k+1). - Philippe Deléham, Oct 17 2011
a(n) = floor((4/3)*floor(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = n + 2*floor(n/2) = 2*n - (n mod 2). - Bruno Berselli, Apr 30 2016
E.g.f.: 2*exp(x)*x - sinh(x). - Stefano Spezia, Sep 09 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + 3*log(2)/4. - Amiram Eldar, Dec 05 2021
a(n) = A000290(n) - 4*A002620(n-1). - Leo Tavares, Oct 04 2022
Showing 1-10 of 45 results. Next