cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A004171 a(n) = 2^(2n+1).

Original entry on oeis.org

2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832, 140737488355328, 562949953421312
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(2, 8), L(2, 8), P(2, 8), T(2, 8). See A008776 for definitions of Pisot sequences.
In the Chebyshev polynomial of degree 2n, a(n) is the coefficient of x^2n. - Benoit Cloitre, Mar 13 2002
1/2 - 1/8 + 1/32 - 1/128 + ... = 2/5. - Gary W. Adamson, Mar 03 2009
From Adi Dani, May 15 2011: (Start)
Number of ways of placing an even number of indistinguishable objects in n + 1 distinguishable boxes with at most 3 objects in box.
Number of compositions of even natural numbers into n + 1 parts less than or equal to 3 (0 is counted as part). (End)
Also the number of maximal cliques in the (n+1)-Sierpinski tetrahedron graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Assuming the Collatz conjecture is true, any starting number eventually leads to a power of 2. A number in this sequence can never be the first power of 2 in a Collatz sequence except of course for the Collatz sequence starting with that number. For example, except for 8, 4, 2, 1, any Collatz sequence that includes 8 must also include 16 (e.g., 5, 16, 8, 4, 2, 1). - Alonso del Arte, Oct 01 2019
First differences of A020988, and thus the "wavelengths" of the local maxima in A020986. See the Brillhart and Morton link, pp. 855-856. - John Keith, Mar 04 2021

Examples

			G.f. = 2 + 8*x + 32*x^2 + 128*x^3 + 512*x^4 + 2048*x^5 + 8192*x^6 + 32768*x^7 + ...
From _Adi Dani_, May 15 2011: (Start)
a(1) = 8 because all compositions of even natural numbers into 2 parts less than or equal to 3 are:
  for 0: (0, 0)
  for 2: (0, 2), (2, 0), (1, 1)
  for 4: (1, 3), (3, 1), (2, 2)
  for 6: (3, 3).
a(2) = 32 because all compositions of even natural numbers into 3 parts less than or equal to 3 are:
  for 0: (0, 0, 0)
  for 2: (0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1) , (1, 1, 0)
  for 4: (0, 1, 3), (0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)
  for 6: (0, 3, 3), (3, 0, 3), (3, 3, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 2, 2)
  for 8: (2, 3, 3), (3, 2, 3), (3, 3, 2).
(End)
		

References

  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.

Crossrefs

Absolute value of A009117. Essentially the same as A081294.
Cf. A132020, A164632. Equals A000980(n) + 2*A181765(n). Cf. A013776.

Programs

Formula

a(n) = 2*4^n.
a(n) = 4*a(n-1).
1 = 1/2 + Sum_{n >= 1} 3/a(n) = 3/6 + 3/8 + 3/32 + 3/128 + 3/512 + 3/2048 + ...; with partial sums: 1/2, 31/32, 127/128, 511/512, 2047/2048, ... - Gary W. Adamson, Jun 16 2003
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 2*A000302(n).
G.f.: 2/(1-4*x). (End)
a(n) = A081294(n+1) = A028403(n+1) - A000079(n+1) for n >= 1. a(n-1) = A028403(n) - A000079(n). - Jaroslav Krizek, Jul 27 2009
E.g.f.: 2*exp(4*x). - Ilya Gutkovskiy, Nov 01 2016
a(n) = A002063(n)/3 - A000302(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = Sum_{k = 0..2*n} (-1)^(k+n)*binomial(4*n + 2, 2*k + 1); a(2*n) = Sum_{k = 0..2*n} binomial(4*n + 2, 2*k + 1) = A013776(n). - Peter Bala, Nov 25 2016
Product_{n>=0} (1 - 1/a(n)) = A132020. - Amiram Eldar, May 08 2023

A013715 a(n) = 10^(2*n+1).

Original entry on oeis.org

10, 1000, 100000, 10000000, 1000000000, 100000000000, 10000000000000, 1000000000000000, 100000000000000000, 10000000000000000000, 1000000000000000000000, 100000000000000000000000, 10000000000000000000000000, 1000000000000000000000000000, 100000000000000000000000000000
Offset: 0

Views

Author

Keywords

Comments

Bisection of A011557 (powers of 10). - Michel Marcus, Jan 17 2016

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
G.f.: 10/(1-100*x).
a(n) = 100*a(n-1), n>0; a(0)=10. (End)
From Elmo R. Oliveira, Aug 26 2024 (Start)
E.g.f.: 10*exp(100*x).
a(n) = 10*A098608(n) = A011557(A005408(n)) = A013747(n)/10^(n+1). (End)

A013716 a(n) = 11^(2*n + 1).

Original entry on oeis.org

11, 1331, 161051, 19487171, 2357947691, 285311670611, 34522712143931, 4177248169415651, 505447028499293771, 61159090448414546291, 7400249944258160101211, 895430243255237372246531
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001020 (11^n).

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 121*a(n-1), a(0)=11.
G.f.: 11/(1-121*x). (End)

A013718 a(n) = 13^(2*n + 1).

Original entry on oeis.org

13, 2197, 371293, 62748517, 10604499373, 1792160394037, 302875106592253, 51185893014090757, 8650415919381337933, 1461920290375446110677, 247064529073450392704413, 41753905413413116367045797
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001022 (12^n).

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 169*a(n-1); a(0)=13.
G.f.: 13/(1-169*x). (End)

A013722 a(n) = 17^(2*n + 1).

Original entry on oeis.org

17, 4913, 1419857, 410338673, 118587876497, 34271896307633, 9904578032905937, 2862423051509815793, 827240261886336764177, 239072435685151324847153, 69091933913008732880827217
Offset: 0

Views

Author

Keywords

Comments

Sum_{n>=0} 1/a(n) = 17/288. - Jaume Oliver Lafont, Feb 04 2009

Crossrefs

Bisection of A001026 (17^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 289*a(n-1), a(0)=17.
G.f.: 17/(1-289*x). (End)

A013724 a(n) = 19^(2*n + 1).

Original entry on oeis.org

19, 6859, 2476099, 893871739, 322687697779, 116490258898219, 42052983462257059, 15181127029874798299, 5480386857784802185939, 1978419655660313589123979, 714209495693373205673756419
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001029.

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 361*a(n-1); a(0)=19.
G.f.: 19/(1-361*x). (End)

A013728 a(n) = 23^(2*n + 1).

Original entry on oeis.org

23, 12167, 6436343, 3404825447, 1801152661463, 952809757913927, 504036361936467383, 266635235464391245607, 141050039560662968926103, 74615470927590710561908487, 39471584120695485887249589623
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 529*a(n-1); a(0)=23.
G.f.: 23/(1-529*x). (End)

A013717 a(n) = 12^(2*n + 1).

Original entry on oeis.org

12, 1728, 248832, 35831808, 5159780352, 743008370688, 106993205379072, 15407021574586368, 2218611106740436992, 319479999370622926848, 46005119909369701466112, 6624737266949237011120128
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001021.

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
a(n) = 144*a(n-1), a(0)=12.
G.f.: 12/(1-144*x). (End)

A013723 a(n) = 18^(2*n + 1).

Original entry on oeis.org

18, 5832, 1889568, 612220032, 198359290368, 64268410079232, 20822964865671168, 6746640616477458432, 2185911559738696531968, 708235345355337676357632, 229468251895129407139872768
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A001027 (18^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 324*a(n-1); a(0)=18.
G.f.: 18/(1-324*x). (End)

A013725 a(n) = 20^(2*n + 1).

Original entry on oeis.org

20, 8000, 3200000, 1280000000, 512000000000, 204800000000000, 81920000000000000, 32768000000000000000, 13107200000000000000000, 5242880000000000000000000, 2097152000000000000000000000, 838860800000000000000000000000, 335544320000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A009964 (20^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 400*a(n-1); a(0)=20.
G.f.: 20/(1-400*x). (End)
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: 20*exp(400*x).
a(n) = A004171(n)*A013715(n) = A009964(A005408(n)). (End)
Showing 1-10 of 13 results. Next