cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A144231 Prime numbers of the form 3^k +- 2 for k >= 1.

Original entry on oeis.org

5, 7, 11, 29, 79, 83, 241, 727, 6563, 19681, 59051, 4782971, 14348909, 31381059607, 282429536483, 2541865828331, 150094635296999123, 450283905890997361, 36472996377170786401, 1144561273430837494885949696429
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Comments

a(49) = 3^2224 - 2 and a(50) = 3^2521 - 2 are too big for a b-file. - Robert Israel, Nov 22 2015

Crossrefs

Programs

  • Maple
    A:= NULL:
    for k from 1 to 1000 do
      t:= 3^k;
      if isprime(t-2) then A:= A, t-2 fi;
      if isprime(t+2) then A:= A, t+2 fi;
    od:
    A; # Robert Israel, Nov 22 2015
  • Mathematica
    Reap[For[k = 1, k <= 100, k++, p = 3^k-2; If[PrimeQ[p], Sow[p]]; If[PrimeQ[p+4], Sow[p+4]]]][[2, 1]] (* Jean-François Alcover, Dec 18 2013 *)

A164783 a(n) = 7^n-6.

Original entry on oeis.org

1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers.

References

  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Programs

Formula

a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - Vincenzo Librandi, Feb 06 2013
a(n) = A000420(n) - 6 for n>0. - Michel Marcus, Aug 31 2013

Extensions

More terms a(8)-a(19) from Vincenzo Librandi, Oct 29 2009

A080892 Numbers k such that 3^k-2 is a semiprime.

Original entry on oeis.org

3, 8, 10, 12, 13, 15, 16, 19, 20, 21, 25, 28, 39, 42, 44, 48, 55, 57, 60, 66, 67, 76, 78, 85, 118, 130, 156, 162, 193, 212, 214, 217, 218, 228, 244, 312, 330, 352, 357, 376, 386, 388, 412, 442, 449, 464, 480, 525, 545, 552, 630, 644
Offset: 1

Views

Author

Hugo Pfoertner, Mar 30 2003

Keywords

Comments

The next roadblock to being able to extend the sequence is 3^658 - 2, a 314-decimal digit composite with no known factors. - Ryan Propper, Feb 07 2013

Examples

			a(1) = 3 because 3^3-2 = 25 = 5*5.
a(2) = 8 because 3^8-2 = 6559 = 7*937.
a(3) = 10 because 3^10-2 = 59047 = 137*431.
		

Crossrefs

Programs

  • Mathematica
    Do[f = 3^n - 2; If[ !PrimeQ[f], s = FactorIntegerECM[f]; If[PrimeQ[s] && PrimeQ[f/s], Print[n]]], {n, 2, 10^3}] (* Ryan Propper, May 11 2007 *)
  • PARI
    for(n=1,200,if(bigomega(3^n-2)==2,print1(n","))) /* Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 02 2007 */

Extensions

Added missing a(1)=3 by Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 01 2007
a(27)-a(42) from Herman Jamke (hermanjamke(AT)fastmail.fm) and Ryan Propper, Apr 01, Apr 19 2007, May 11 2007
Restored missing terms < 388 by Sean A. Irvine, Apr 06 2011 (Some correctly stated terms in Jamke's and Propper's list had been omitted during editing)
a(43)-a(47) from Sean A. Irvine, Jun 13 2012
a(48) from Ryan Propper, Sep 30 2012
a(49)-a(52) from Ryan Propper, Feb 07 2013

A234503 Number of ways to write n = k + m with k > 0 and m > 0 such that 3^(phi(k)/2 + phi(m)/12) + 2 is prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 4, 4, 2, 3, 2, 1, 3, 4, 8, 3, 4, 4, 4, 6, 3, 4, 6, 3, 5, 5, 3, 2, 2, 6, 5, 3, 2, 3, 7, 4, 3, 4, 4, 3, 4, 4, 4, 5, 2, 5, 2, 6, 5, 7, 3, 5, 7, 6, 13, 5, 7, 7, 10, 6, 8, 8, 9, 6, 7, 8, 6, 6, 5, 7, 9, 6, 7, 8, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 26 2013

Keywords

Comments

It might seem that a(n) > 0 for all n > 14, but a(43905) = 0. If a(n) > 0 infinitely often, then there are infinitely many primes of the form 3^m + 2.
Similarly, it might seem that for n > 26 there is a positive integer k < n such that m = phi(k)/2 + phi(n-k)/12 is an integer with 3^m - 2 prime, but n = 41213 is a counterexample.
See also A234451 and A236358 for similar sequences.

Examples

			a(15) = 1 since 15 = 1 + 14 with 3^(phi(1)/2 + phi(14)/12) + 2 = 3 + 2 = 5 prime.
a(23) = 1 since 23 = 10 + 13 with 3^(phi(10)/2 + phi(13)/12) + 2 = 3^3 + 2 = 29 prime.
a(24) = 1 since 24 = 3 + 21 with 3^(phi(3)/2 + phi(21)/12) + 2 = 3^2 + 2 = 11 prime.
a(37) = 1 since 37 = 9 + 28 with 3^(phi(9)/2 + phi(28)/12) + 2 = 3^4 + 2 = 83 prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=3^(EulerPhi[k]/2+EulerPhi[n-k]/12)+2
    a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A080798 Largest prime factor of 3^n-2.

Original entry on oeis.org

7, 5, 79, 241, 727, 23, 937, 19681, 431, 499, 4703, 8093, 40193, 2869781, 483671, 94747, 4657, 232452293, 498112057, 2812679, 31381059607, 3765727153, 1364071, 44594137339, 125231, 13170403, 5353801183, 4159349, 46050353857, 294487079, 26892769, 29178816413, 3533781113
Offset: 2

Views

Author

Hugo Pfoertner, Mar 25 2003

Keywords

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(3^n-2)):n in [2..30]]; // Marius A. Burtea, Jul 12 2019
  • Mathematica
    FactorInteger[#][[-1,1]]&/@(3^Range[2,30]-2) (* Harvey P. Dale, Apr 07 2022 *)
  • PARI
    a(n) = vecmax(factor(3^n-2)[,1]); \\ Michel Marcus, Jul 12 2019
    

Formula

a(n) = A006530(A058481(n)). - Michel Marcus, Jul 12 2019

A164784 a(n) = 6^n-5.

Original entry on oeis.org

1, 31, 211, 1291, 7771, 46651, 279931, 1679611, 10077691, 60466171, 362797051, 2176782331, 13060694011, 78364164091, 470184984571, 2821109907451, 16926659444731, 101559956668411, 609359740010491, 3656158440062971
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Programs

  • Magma
    [6^n-5: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
  • Mathematica
    CoefficientList[Series[(1 + 24 x)/(1 - 7 x + 6 x^2), {x, 0, 30}],x] (* Vincenzo Librandi, Feb 06 2013 *)

Formula

a(n) = 6*a(n-1)+25 with n>1, a(1)=1. - Vincenzo Librandi, Oct 29 2009
G.f.: x*(1 + 24*x)/(1 - 7*x + 6*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 4 + (exp(5*x) - 5)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

A164785 a(n) = 5^n - 4.

Original entry on oeis.org

1, 21, 121, 621, 3121, 15621, 78121, 390621, 1953121, 9765621, 48828121, 244140621, 1220703121, 6103515621, 30517578121, 152587890621, 762939453121, 3814697265621, 19073486328121, 95367431640621, 476837158203121
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Cf. A059613.

Programs

Formula

a(n) = 5*a(n-1) + 16 with n > 1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
a(n) = 6*a(n-1) - 5*a(n-2); a(1)=1, a(2)=21. - Harvey P. Dale, Jun 07 2012
G.f.: x*(1 + 15*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 3 + (exp(4*x) - 4)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

Extensions

More terms a(9)-a(21) from Vincenzo Librandi, Oct 29 2009

A164786 a(n) = 8^n-7.

Original entry on oeis.org

1, 57, 505, 4089, 32761, 262137, 2097145, 16777209, 134217721, 1073741817, 8589934585, 68719476729, 549755813881, 4398046511097, 35184372088825, 281474976710649, 2251799813685241, 18014398509481977, 144115188075855865
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Programs

  • Magma
    [8^n-7: n in [1..20]]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    8^Range[20]-7 (* or *) LinearRecurrence[{9,-8},{1,57},20] (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = 8*a(n-1)+49, with a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+48*x)/(1-9*x+8*x^2). a(n) = 9*a(n-1)-8*a(n-2). - Colin Barker, Jan 28 2012
E.g.f.: 6 + (exp(7*x) - 7)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

Extensions

More terms a(7)-a(19) from Vincenzo Librandi, Oct 29 2009

A093612 Primes of form 7^n-2.

Original entry on oeis.org

5, 47, 2399, 823541, 5764799, 13841287199, 4747561509941, 459986536544739960976799, 157775382034845806615042741, 97327453648743672783790144527749033795901408624680013074608083129650399
Offset: 1

Views

Author

Arnaud Vernier, May 23 2004

Keywords

Comments

The exponents n are listed in A090669, cf. formula. [From M. F. Hasler, Nov 26 2009]
The next term (a(11)) has 83 digits. - Harvey P. Dale, Nov 14 2014

Crossrefs

Cf. A014232.

Programs

  • Mathematica
    Select[7^Range[90]-2,PrimeQ] (* Harvey P. Dale, Nov 14 2014 *)

Formula

a(n)=7^A090669(n)-2. [From M. F. Hasler, Nov 26 2009]

Extensions

Terms beyond a(6) from M. F. Hasler, Nov 26 2009

A022603 Indices of primes of form 3^p - 2.

Original entry on oeis.org

4, 22, 53, 129, 2227, 1357200840
Offset: 1

Views

Author

Keywords

Examples

			The second prime that is 2 less than a power of 3 is 79, which is p(22), so 22 is second on the list.
		

Crossrefs

Cf. A014232.
Showing 1-10 of 11 results. Next