cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046034 Numbers whose digits are primes.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=2,3,5,7 for k=1..4. - Hieronymus Fischer, May 30 2012
According to A153025, it seems that 5, 235 and 72335 are the only terms whose square is also a term, i.e., which are also in the sequence A275971 of square roots of the terms which are squares, listed in A191486. - M. F. Hasler, Sep 16 2016

Examples

			a(100)   = 2277,
a(10^3)  = 55327,
a(9881)  = 3233232,
a(10^4)  = 3235757,
a(10922) = 3333333,
a(10^5)  = 227233257.
		

Crossrefs

Programs

  • Haskell
    a046034 n = a046034_list !! (n-1)
    a046034_list = filter (all (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [2..532] | Set(Intseq(n)) subset [2, 3, 5, 7]];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 3}] // Flatten (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    is_A046034(n)=Set(isprime(digits(n)))==[1] \\ M. F. Hasler, Oct 12 2013
    
  • Python
    def A046034(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join(('2357'[(3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3] for j in range(m)))) # Chai Wah Wu, Feb 08 2023

Formula

A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011
From Hieronymus Fischer, Apr 20, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b(j)+1) mod 8 + floor(b(j)/4) - floor((b(j)-1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
a(n) = Sum_{j=0..m-1} A010877(A005408(b(j)) + A002265(b(j)) - A002265(b(j)-1))*10^j.
Special values:
a(1*(4^n-1)/3) = 2*(10^n-1)/9.
a(2*(4^n-1)/3) = 1*(10^n-1)/3.
a(3*(4^n-1)/3) = 5*(10^n-1)/9.
a(4*(4^n-1)/3) = 7*(10^n-1)/9.
Inequalities:
a(n) <= 2*(10^log_4(3*n+1)-1)/9, equality holds for n = (4^k-1)/3, k>0.
a(n) <= 2*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = (7/90)*10^log_4(3) = 0.48232167706987..., for n -> oo.
lim sup a(n)/10^log_4(n) = (2/9)*10^log_4(3) = 1.378061934485343..., for n -> oo.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(2 + z(j) + 2*z(j)^2 + 2*z(j)^3 - 7*z(j)^4)/(1-z(j)^4), where z(j) = x^4^j.
Also g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(2 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3)/(1-z(j)^4), where z(j)=x^4^j.
Also: g(x) = (1/(1-x))*(2*h_(4,0)(x) + h_(4,1)(x) + 2*h_(4,2)(x) + 2*h_(4,3)(x) - 7*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.857333779940977502574887651449435985318556794733869779170825138954093657197... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

More terms from Cino Hilliard, Aug 06 2006
Typo in second formula corrected by Hieronymus Fischer, May 12 2012
Two typos in example section corrected by Hieronymus Fischer, May 30 2012

A014263 Numbers that contain even digits only.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
Offset: 1

Views

Author

Keywords

Comments

The set of real numbers between 0 and 1 that contain no odd digits in their decimal expansion has Hausdorff dimension log 5 / log 10.
Integers written in base 5 and then doubled (in base 10). - Franklin T. Adams-Watters, Mar 15 2006
The carryless mod 10 "even" numbers (cf. A004529) sorted and duplicates removed. - N. J. A. Sloane, Aug 03 2010.
Complement of A007957; A196564(a(n)) = 0; A103181(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,2,4,6,8 for k=0..4. - Hieronymus Fischer, Jun 03 2012

Examples

			a(1000) = 24888.
a(10^4) = 60888.
a(10^5) = 22288888.
a(10^6) = 446888888.
		

References

  • K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.

Crossrefs

Programs

  • Haskell
    a014263 n = a014263_list !! (n-1)
    a014263_list = filter (all (`elem` "02468") . show) [0,2..]
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Magma
    [n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]];  // Bruno Berselli, Jul 19 2011
    
  • Maple
    a:= proc(m) local L,i;
      L:= convert(m-1,base,5);
      2*add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    seq(a(i),i=1..100); # Robert Israel, Apr 07 2016
  • Mathematica
    Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *)
    FromDigits/@Tuples[{0,2,4,6,8},3] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
    
  • PARI
    is(n)=#setminus(Set(digits(n)), [0,2,4,6,8])==0 \\ Charles R Greathouse IV, Mar 03 2025
  • Python
    from sympy.ntheory.digits import digits
    def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:]))
    print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
    
  • Python
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield 0
        for d in count(1):
            for first in "2468":
                for rest in product("02468", repeat=d-1):
                    yield int(first + "".join(rest))
    print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
    

Formula

A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
a(n) = 2*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022

Extensions

Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012

A084984 Numbers containing no prime digits.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 10, 11, 14, 16, 18, 19, 40, 41, 44, 46, 48, 49, 60, 61, 64, 66, 68, 69, 80, 81, 84, 86, 88, 89, 90, 91, 94, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 114, 116, 118, 119, 140, 141, 144, 146, 148, 149, 160, 161, 164, 166, 168, 169
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 27 2003

Keywords

Comments

Complement of A118950. - Reinhard Zumkeller, Jul 19 2011
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,4,6,8,9 for k=0..5. - Hieronymus Fischer, May 30 2012

Examples

			166 has digits 1 and 6 and they are nonprime digits.
a(1000) = 8686.
a(10^4) = 118186
a(10^5) = 4090986.
a(10^6) = 66466686.
		

Crossrefs

Programs

  • Haskell
    a084984 n = a084984_list !! (n-1)
    a084984_list = filter (not . any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [0..169] | forall{d: d in [2,3,5,7] | d notin Set(Intseq(n))}];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    npdQ[n_]:=And@@Table[FreeQ[IntegerDigits[n],i],{i,{2,3,5,7}}]; Select[ Range[ 0,200],npdQ] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    is(n)=isprime(eval(Vec(Str(n))))==0 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    my(table=[0,1,4,6,8,9]); \
    a(n) = fromdigits([table[d+1] |d<-digits(n-1,6)]); \\ Kevin Ryde, May 27 2025

Formula

A193238(a(n)) = 0. - Reinhard Zumkeller, Jul 19 2011
a(n) >> n^1.285. - Charles R Greathouse IV, Feb 20 2012
From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = ((2*b_m(n)+1) mod 10 + floor((b_m(n)+4)/5) - floor((b_m(n)+1)/5))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 12 + floor(b_j(n)/6) - floor((b_j(n)+1)/6) + floor((b_j(n)+4)/6) - floor((b_j(n)+5)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
Special values:
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 4*10^n.
a(3*6^n+1) = 6*10^n.
a(4*6^n+1) = 8*10^n.
a(5*6^n+1) = 9*10^n.
a(2*6^n) = 2*10^n - 1.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0.
Inequalities:
a(n) < 10^log_6(n-1) for 6^k+10.
a(n) > 10^log_6(n-1) for 2*6^k=0.
a(n) <= 4*10^(log_6(n-1)-log_6(2)) = 1.641372618*10^(log_6(n-1)), equality holds for n=2*6^k+1, k>=0.
a(n) > 2*10^(log_6(n-1)-log_6(2)) = 0.820686309*10^(log_6(n-1)).
a(n) = A007092(n-1) iff the digits of A007092(n-1) are 0 or 1, a(n)>A007092(n-1), else.
a(n) >= A202267(n), equality holds if the representation of n-1 as a base-6 number has only digits 0 or 1.
Lower and upper limits:
lim inf a(n)/10^log_6(n) = 2/10^log_6(2) = 0.820686309, for n --> inf.
lim sup a(n)/10^log_6(n) = 4/10^log_6(2) = 1.641372618, for n --> inf.
where 10^log_6(n) = n^1.2850972089...
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j * (1-x^6^j)*((1+x^6^j)^4 + 4(1+2x^6^j) * x^(3*6^j))/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + 3*h_(6,2)(x) + 2*h_(6,3)(x) + 2*h_(6,4)(x) + h_(6,5)(x) - 9*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 3.614028405471074989720026361356036456697082276983705341077940360653303099111... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

0 added by N. J. A. Sloane, Feb 02 2009
100 added by Arkadiusz Wesolowski, Mar 10 2011
Examples for n>=10^3 added by Hieronymus Fischer, May 30 2012

A001744 Numbers n such that every digit contains a loop (version 2).

Original entry on oeis.org

0, 4, 6, 8, 9, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 84, 86, 88, 89, 90, 94, 96, 98, 99, 400, 404, 406, 408, 409, 440, 444, 446, 448, 449, 460, 464, 466, 468, 469, 480, 484, 486, 488, 489, 490, 494, 496, 498, 499, 600, 604, 606, 608, 609, 640, 644, 646
Offset: 1

Views

Author

Keywords

Comments

See A001743 for the other version.
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,4,6,8,9 for k=0..4. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 46999.
a(10^4) = 809999.
a(10^5) = 44499999.
a(10^6) = 668999999.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Tuples[{0,4,6,8,9},3] (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 4 + floor(b_m(n)/4) - floor((b_m(n)+1)/4))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 10 + 2*floor((b_j(n)+4)/5) - floor((b_j(n)+1)/5) -floor(b_j(n)/5)))*10^j, where n>1, b_j(n)) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 4*10^n.
a(2*5^n+1) = 6*10^n.
a(3*5^n+1) = 8*10^n.
a(4*5^n+1) = 9*10^n.
a(n) = 4*10^log_5(n-1) for n=5^k+1,
a(n) < 4*10^log_5(n-1), otherwise.
a(n) > 10^log_5(n-1) n>1.
a(n) = 4*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^5^j*(1-x^5^j)*(4 + 6x^5^j + 8(x^2)^5^j + 9(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = (x/(1-x))*(4*h_(5,1)(x) + 2*h_(5,2)(x) + 2*h_(5,3)(x) + h_(5,4)(x) - 9*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)

Extensions

Ambiguous comment deleted by Zak Seidov, May 25 2010
Examples added by Hieronymus Fischer, May 30 2012

A001743 Numbers in which every digit contains at least one loop (version 1).

Original entry on oeis.org

0, 6, 8, 9, 60, 66, 68, 69, 80, 86, 88, 89, 90, 96, 98, 99, 600, 606, 608, 609, 660, 666, 668, 669, 680, 686, 688, 689, 690, 696, 698, 699, 800, 806, 808, 809, 860, 866, 868, 869, 880, 886, 888, 889, 890, 896, 898, 899, 900, 906, 908, 909, 960, 966, 968, 969
Offset: 1

Views

Author

Keywords

Comments

See A001744 for the other version.
If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - Hieronymus Fischer, May 30 2012

Examples

			a(1000) = 99896.
a(10^4) = 8690099.
a(10^5) = 680688699.
		

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits/@Tuples[{0,6,8,9},n],{n,3}]]] (* Harvey P. Dale, Sep 04 2013 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

Formula

From Hieronymus Fischer, May 30 2012: (Start)
a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)).
a(1*4^n+1) = 6*10^n.
a(2*4^n+1) = 8*10^n.
a(3*4^n+1) = 9*10^n.
a(n) = 6*10^log_4(n-1) for n=4^k+1,
a(n) < 6*10^log_4(n-1), otherwise.
a(n) > 10^log_4(n-1) for n>1.
a(n) = 6*A007090(n-1), iff the digits of A007090(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)).
Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End)

Extensions

Examples added by Hieronymus Fischer, May 30 2012

A029581 Numbers in which all digits are composite.

Original entry on oeis.org

4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 89, 94, 96, 98, 99, 444, 446, 448, 449, 464, 466, 468, 469, 484, 486, 488, 489, 494, 496, 498, 499, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 689, 694, 696, 698, 699, 844, 846, 848
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=4,6,8,9 for k=1..4. - Hieronymus Fischer, May 30 2012

Examples

			From _Hieronymus Fischer_, May 30 2012: (Start)
a(1000) = 88649.
a(10^4) = 6468989
a(10^5) = 449466489. (End)
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | Set(Intseq(n)) subset [4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
  • Mathematica
    Table[FromDigits/@Tuples[{4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)

Formula

From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} (2*b(j) mod 8 + 4 + floor(b(j)/4) - floor((b(j)+1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Also: a(n) = Sum_{j=0..m-1} (A010877(2*b(j)) + 4 + A002265(b(j)) - A002265(b(j)+1))*10^j.
Special values:
a(1*(4^n-1)/3) = 4*(10^n-1)/9.
a(2*(4^n-1)/3) = 2*(10^n-1)/3.
a(3*(4^n-1)/3) = 8*(10^n-1)/9.
a(4*(4^n-1)/3) = 10^n-1.
a(n) < 4*(10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k > 0.
a(n) < 4*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > 2*A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = 1/10*10^log_4(3) = 0.62127870, for n --> inf.
lim sup a(n)/10^log_4(n) = 4/9*10^log_4(3) = 2.756123868970, for n --> inf.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(4 + 6z(j) + 8*z(j)^2 + 9*z(j)^3)/(1-z(j)^4), where z(j) = x^4^j.
Also: g(x) = (1/(1-x))*(4*h_(4,0)(x) + 2*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*(x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.039691381254753739202528087006945643166147087095114911673083135126969046250... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 03 2011

A017222 a(n) = (9*n + 5)^2.

Original entry on oeis.org

25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (m*n+5)^2: A010864 (m=0), A000290 (m=1), A016754 (m=2), A016790 (m=3), A016814 (m=4), A016850 (m=5), A016970 (m=6), A017042 (m=7), A017126 (m=8), this sequence (m=9), A017330 (m=10), A017450 (m=11), A017582 (m=12).

Programs

Formula

a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023
Showing 1-8 of 8 results.