A019538 Triangle of numbers T(n,k) = k!*Stirling2(n,k) read by rows (n >= 1, 1 <= k <= n).
1, 1, 2, 1, 6, 6, 1, 14, 36, 24, 1, 30, 150, 240, 120, 1, 62, 540, 1560, 1800, 720, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880, 1, 1022, 55980, 818520, 5103000, 16435440, 29635200, 30240000, 16329600, 3628800
Offset: 1
Examples
The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 1: 1 2: 1 2 3: 1 6 6 4: 1 14 36 24 5: 1 30 150 240 120 6: 1 62 540 1560 1800 720 7: 1 126 1806 8400 16800 15120 5040 8: 1 254 5796 40824 126000 191520 141120 40320 9: 1 510 18150 186480 834120 1905120 2328480 1451520 362880 10: 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800 ... Reformatted and extended - _Wolfdieter Lang_, Oct 04 2014 --------------------------------------------------------------------------- T(4,1) = 1: {1234}. T(4,2) = 14: {1}{234} (4 ways), {12}{34} (6 ways), {123}{4} (4 ways). T(4,3) = 36: {12}{3}{4} (12 ways), {1}{23}{4} (12 ways), {1}{2}{34} (12 ways). T(4,4) = 1: {1}{2}{3}{4} (1 way).
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 89, ex. 1; also p. 210.
- Miklos Bona, Combinatorics of Permutations, Chapman and Hall,2004, p.12.
- G. Boole, A Treatise On The Calculus of Finite Differences, Dover Publications, 1960, p. 20.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, 1989, p. 155. Also eqs.(6.10) and (6.37).
- Kiran S. Kedlaya and Andrew V. Sutherland, Computing L -Series of Hyperelliptic Curves in Algorithmic Number Theory Lecture Notes in Computer Science Volume 5011/2008.
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.6.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
- J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
- E. Whittaker and G. Robinson, The Calculus of Observations, Blackie, London, 4th ed., 1949; p. 7.
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
- N. Arkani-Hamed, Y. Bai, S. He, and G. Yan, Scattering forms and the positive geometry of kinematics, color, and the worldsheet , arXiv:1711.09102 [hep-th], 2017. [From _Tom Copeland_, Jun 24 2018]
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. (See Theorem 2.1 (iv), p. 131.)
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. F. Barbero G., J. Salas and E. J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv preprint arXiv:1307.5624 [math.CO], 2013.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- K. N. Boyadzhiev, A Series transformation formula and related polynomials, Int. J. Math. Math. Sc. 23 (2005), 3849-3866.
- Xavier Bultel, Jannik Dreier, Matthieu Giraud, Marie Izaute, Timothée Kheyrkhah, Pascal Lafourcade, Dounia Lakhzoum, Vincent Marlin, and Ladislav Motá, Security Analysis and Psychological Study of Authentication Methods with PIN Codes, RCIS 2018 - IEEE 12th International Conference on Research Challenges in Information Science, 2018.
- J. L. Chandon, J. LeMaire, and J. Pouget, Dénombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
- Frédéric Chapoton and Vincent Pilaud, Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, arXiv:2201.06896 [math.CO], 2022. See p. 12, 19.
- Tom Copeland, The Bernoulli polynomials and Hirzebruch's generalized Todd class
- E. Delucchi, A. Pixton, and L. Sabalka, Face vectors of subdivided simplicial complexes Discrete Math. 312 (2012), no. 2, 248--257. MR2852583 (2012j:05470). See p. 250. - _N. J. A. Sloane_, Apr 04 2014
- I. Dolgachev and V. Lunts, A character formula for the representation of the Weyl group in the cohomology of the associated toric variety, Journal of Algebra, 168, 741-772, (1994).
- Loïc Foissy and Frédéric Patras, Lie theory of free cocommutative and commutative cofree Hopf algebras, hal-04773293, 2024. See p. 42.
- S. Fomin and N. Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004; arXiv:math/0505518 [math.CO], 2005-2008.
- S. Franco and A. Hasan, Graded Quivers, Generalized Dimer Models and Toric Geometry , arXiv preprint arXiv:1904.07954 [hep-th], 2019.
- T. L. Friedman and P. Klingsberg, Combinatorial identities by way of Wilf's multigraph model, Int. J. Math. Math. Sci. (2006) 96327, defn. 4.3.
- X. Gao, S. He, and Y. Zhan, Labelled tree graphs, Feynman diagrams and disk integrals , arXiv:1708.08701 [hep-th], 2017. [From _Tom Copeland_, Jun 24 2018]
- M. Goebel, On the number of special permutation-invariant orbits and terms, in Applicable Algebra in Engin., Comm. and Comp. (AAECC 8), Volume 8, Number 6, 1997, pp. 505-509 (Lect. Notes Comp. Sci.)
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5
- J. Gubeladze and J. Love, Vertex maps between simplices, cubes, and crosspolytopes, arXiv preprint arXiv:1304.3775 [math.CO], 2013.
- Jens Gulin and Kalle Åström, Alternative implementations of the Auxiliary Duplicating Permutation Invariant Training, Proc Work-in-Progress Papers at 14th Int'l Conf. Indoor Positioning Indoor Nav. (IPIN-WiP 2024). See p. 6.
- Li Guo, Baxter algebras, Stirling numbers and partitions, arXiv:math/0402348 [math.AC], 2004.
- M. Iida, On Triangle of numbers, Josai Mathematical Monographs, Vol. 5 (2012), 61-70;
- A. Hasan, Physics and Mathematics of Graded Quivers, dissertation, Graduate Center, City University of New York, 2019.
- Gábor Hetyei, The Stirling polynomial of a simplicial complex Discrete and Computational Geometry 35, Number 3, March 2006, pp 437-455.
- Gábor Hetyei, Face enumeration using generalized binomial coefficients. Online draft version of the Hetyei paper referenced above.
- Sergey Kitaev, Andrew Niedermaier, Jeffrey Remmel, and Manda Riehl, Generalized pattern-matching conditions for Ck wreath Sn, ISRN Comb. 2013, Article ID 634823, 20 p. (2013), eq. (87)
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- J. Loday, The Multiple Facets of the Associahedron [From _Tom Copeland_, Sep 29 2008]
- František Marko, Sums of Consecutive Powers as a Linear Combination of Products of Two Figurate Numbers, J. Int. Seq., Vol. 25 (2022), Article 22.2.8.
- Richard J. Mathar, On an Alternating Double Sum of a Triple Product of Aerated Binomial Coefficients, arXiv:2306.08022 [math.GM], 2023.
- MathOverflow, How many surjections are there from a set of size n? [From _Tom Copeland_, Sep 09 2015]
- E. Mendelson, Races with Ties, Math. Mag. 55 (1982), 170-175.
- Lucas Chaves Meyles, Pamela E. Harris, Richter Jordaan, Gordon Rojas Kirby, Sam Sehayek, and Ethan Spingarn, Unit-Interval Parking Functions and the Permutohedron, arXiv:2305.15554 [math.CO], 2023.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- Arthur Nunge, Eulerian polynomials on segmented permutations, arXiv:1805.01797 [math.CO], 2018.
- OEIS Wiki, Sorting numbers
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003.
- Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- G. Rzadkowski, Bernoulli numbers and solitons revisited, Journal of Nonlinear Mathematical Physics, 17:1, 121-126, DOI: 10.1142/S1402925110000635
- Natalie Schluter, The Taylor expansion for dropout is divergent, 2018.
- Natalie Schluter, On approximating dropout noise injection, arXiv:1905.11320 [cs.LG], 2019.
- Mark Shattuck, Combinatorial proofs of some Stirling number formulas, Preprint (ResearchGate), 2014.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
- R. Simion, Convex Polytopes and Enumeration, Adv. in Appl. Math. 18 (1997) pp. 149-180.
- J. Stembridge, Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. in Math., 106, 244-301, (1994).
- D. Stephen, Topology on Finite Sets, American Mathematical Monthly, 75: 739 - 741, 1968.
- S. M. Tanny, On some numbers related to the Bell numbers, Canad. Math. Bull. Vol. 17 (5), 733-738, 1975.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- D. P. Walsh, Toy stories and combinatorial identities
- Eric Weisstein's World of Mathematics, Clique Covering
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Minimum Edge Cover
- Wikipedia, Truncated octahedron
- J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, J. reine u. angew. Math., 94 (1883) 203-232.
Crossrefs
Cf. A000918, A000919, A001117, A001118, A008275, A008277, A008279, A048594, A059117, A059515, A074909, A084938, A089072, A092477, A183109, A218695, A329943.
See also the two closely related triangles: A008277(n, k) = T(n, k)/k! (Stirling numbers of second kind) and A028246(n, k) = T(n, k)/k.
Cf. A033282 'faces' of the associahedron.
Visible in the 3-D array in A249042.
See also A000182.
Programs
-
Haskell
a019538 n k = a019538_tabl !! (n-1) !! (k-1) a019538_row n = a019538_tabl !! (n-1) a019538_tabl = iterate f [1] where f xs = zipWith (*) [1..] $ zipWith (+) ([0] ++ xs) (xs ++ [0]) -- Reinhard Zumkeller, Dec 15 2013
-
Maple
with(combinat): A019538 := (n,k)->k!*stirling2(n,k);
-
Mathematica
Table[k! StirlingS2[n, k], {n, 9}, {k, n}] // Flatten
-
PARI
{T(n, k) = if( k<0 || k>n, 0, sum(i=0, k, (-1)^i * binomial(k, i) * (k-i)^n))}; /* Michael Somos, Oct 08 2003 */
-
Sage
def T(n, k): return factorial(k)*stirling_number2(n,k) # Danny Rorabaugh, Oct 10 2015
Formula
T(n, k) = k*(T(n-1, k-1)+T(n-1, k)) with T(0, 0) = 1 [or T(1, 1) = 1]. - Henry Bottomley, Mar 02 2001
E.g.f.: (y*(exp(x)-1) - exp(x))/(y*(exp(x)-1) - 1). - Vladeta Jovovic, Jan 30 2003
Equals [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*j^n*binomial(k, j). - Mario Catalani (mario.catalani(AT)unito.it), Nov 28 2003. See Graham et al., eq. (6.19), p. 251. For a proof see Bert Seghers, Jun 29 2013.
Sum_{k=0..n} T(n, k)(-1)^(n-k) = 1, Sum_{k=0..n} T(n, k)(-1)^k = (-1)^n. - Mario Catalani (mario.catalani(AT)unito.it), Dec 11 2003
O.g.f. for n-th row: polylog(-n, x/(1+x))/(x+x^2). - Vladeta Jovovic, Jan 30 2005
E.g.f.: 1 / (1 + t*(1-exp(x))). - Tom Copeland, Oct 13 2008
From Peter Bala, Oct 26 2008: (Start)
O.g.f. as a continued fraction: 1/(1 - x*t/(1 - (x + 1)*t/(1 - 2*x*t/(1 - 2*(x + 1)*t/(1 - ...))))) = 1 + x*t + (x + 2*x^2)*t^2 + (x + 6*x^2 + 6*x^3)*t^3 + ... .
The row polynomials R(n,x), which begin R(1,x) = x, R(2,x) = x + 2*x^2, R(3,x) = x + 6*x^2 + 6*x^3, satisfy the recurrence x*d/dx ((x + 1)*R(n,x)) = R(n+1,x). It follows that the zeros of R(n,x) are real and negative (apply Corollary 1.2 of [Liu and Wang]).
Since this is the triangle of f-vectors of the (simplicial complexes dual to the) type A permutohedra, whose h-vectors form the Eulerian number triangle A008292, the coefficients of the polynomial (x-1)^n*R(n,1/(x-1)) give the n-th row of A008292. For example, from row 3 we have x^2 + 6*x + 6 = 1 + 4*y + y^2, where y = x + 1, producing [1,4,1] as the third row of A008292. The matrix product A008292 * A007318 gives the mirror image of this triangle (see A090582).
For n,k >= 0, T(n+1,k+1) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*[(j+1)^(n+1) - j^(n+1)]. The matrix product of Pascal's triangle A007318 with the current array gives (essentially) A047969. This triangle is also related to triangle A047969 by means of the S-transform of [Hetyei], a linear transformation of polynomials whose value on the basis monomials x^k is given by S(x^k) = binomial(x,k). The S-transform of the shifted n-th row polynomial Q(n,x) := R(n,x)/x is S(Q(n,x)) = (x+1)^n - x^n. For example, from row 3 we obtain S(1 + 6*x + 6*x^2) = 1 + 6*x + 6*x*(x-1)/2 = 1 + 3*x + 3*x^2 = (x+1)^3 - x^3. For fixed k, the values S(Q(n,k)) give the nonzero entries in column (k-1) of the triangle A047969 (the Hilbert transform of the Eulerian numbers). (End)
E.g.f.: (exp(x)-1)^k = sum T(n,k)x^n/n!. - Vladimir Kruchinin, Aug 10 2010
T(n,k) = Sum_{i=1..k} A(n,i)*Binomial(n-i,k-i) where A(n,i) is the number of n-permutations that have i ascending runs, A008292.
From Tom Copeland, Oct 11 2011: (Start)
With e.g.f. A(x,t) = -1 + 1/(1+t*(1-exp(x))), the comp. inverse in x is B(x,t) = log(((1+t)/t) - 1/(t(1+x))).
With h(x,t) = 1/(dB/dx)= (1+x)((1+t)(1+x)-1), the row polynomial P(n,t) is given by (h(x,t)*d/dx)^n x, eval. at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(0,t)=0.
(A factor of -1/n! was removed by Copeland on Aug 25 2016.) (End)
The term linear in x of [x*h(d/dx,t)]^n 1 gives the n-th row polynomial. (See A134685.) - Tom Copeland, Nov 07 2011
Row polynomials are given by D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator (1+x)*d/dx. - Peter Bala, Nov 25 2011
T(n,x+y) = Sum_{j=0..n} binomial(n,j)*T(j,x)*T(n-j,y). - Dennis P. Walsh, Feb 24 2012
Let P be a Rota-Baxter operator of weight 1 satisfying the identity P(x)*P(y) = P(P(x)*y) + P(x*P(y)) + P(x*y). Then P(1)^2 = P(1) + 2*P^2(1). More generally, Guo shows that P(1)^n = Sum_{k=1..n} T(n,k)*P^k(1). - Peter Bala, Jun 08 2012
Sum_{i=1..n} (-1)^i*T(n,i)/i = 0, for n > 1. - Leonid Bedratyuk, Aug 09 2012
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(k, j)*(k-j)^n. [M. Catalani's re-indexed formula from Nov 28 2003] Proof: count the surjections of [n] onto [k] with the inclusion-exclusion principle, as an alternating sum of the number of functions from [n] to [k-j]. - Bert Seghers, Jun 29 2013
n-th row polynomial = 1/(1 + x)*( Sum_{k>=0} k^n*(x/(1 + x))^k ), valid for x in the open interval (-1/2, inf). See Tanny link. Cf. A145901. - Peter Bala, Jul 22 2014
T(n,k) = k * A141618(n,k-1) / binomial(n,k-1). - Tom Copeland, Oct 25 2014
Sum_{n>=0} n^k*a^n = Sum_{i=1..k} (a / (1 - a))^i * T(k, i)/(1-a) for |a| < 1. - David A. Corneth, Mar 09 2015
From Peter Bala, May 26 2015: (Start)
The row polynomials R(n,x) satisfy (1 + x)*R(n,x) = (-1)^n*x*R(n,-(1 + x)).
For a fixed integer k, the expansion of the function A(k,z) := exp( Sum_{n >= 1} R(n,k)*z^n/n ) has integer coefficients and satisfies the functional equation A(k,z)^(k + 1) = BINOMIAL(A(k,z))^k, where BINOMIAL(F(z))= 1/(1 - z)*F(z/(1 - z)) denotes the binomial transform of the o.g.f. F(z). Cf. A145901. For cases see A084784 (k = 1), A090352 (k = 2), A090355 (k = 3), A090357 (k = 4), A090362 (k = 5) and A084785 (k = -2 with z -> -z).
A(k,z)^(k + 1) = A(-(k + 1),-z)^k and hence BINOMIAL(A(k,z)) = A(-(k + 1),-z). (End)
From Tom Copeland, Oct 19 2016: (Start)
Let a(1) = 1 + x + B(1) = x + 1/2 and a(n) = B(n) = (B.)^n, where B(n) are the Bernoulli numbers defined by e^(B.t) = t / (e^t-1), then t / e^(a.t) = t / [(x + 1) * t + exp(B.t)] = (e^t - 1) /[ 1 + (x + 1) (e^t - 1)] = exp(p.(x)t), where (p.(x))^n = p_n(x) are the shifted, signed row polynomials of this array: p_0(x) = 0, p_1(x) = 1, p_2(x) = -(1 + 2 x), p_3(x) = 1 + 6 x + 6 x^2, ... and p_n(x) = n * b(n-1), where b(n) are the partition polynomials of A133314 evaluated with these a(n).
Sum_{n > 0} R(n,-1/2) x^n/n! = 2 * tanh(x/2), where R(n,x) = Sum_{k = 1..n} T(n,k) x^(k-1) are the shifted row polynomials of this entry, so R(n,-1/2) = 4 * (2^(n+1)-1) B(n+1)/(n+1). (Cf. A000182.)
(End)
Also the Bernoulli numbers are given by B(n) = Sum_{k =1..n} (-1)^k T(n,k) / (k+1). - Tom Copeland, Nov 06 2016
G.f. for column k: k! x^k / Product_{i=1..k} (1-i*x). - Robert A. Russell, Sep 25 2018
a(j) <= A183109(j). - Manfred Boergens, Jul 25 2021
Comments