cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A068028 Decimal expansion of 22/7.

Original entry on oeis.org

3, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4
Offset: 1

Views

Author

Nenad Radakovic, Mar 22 2002

Keywords

Comments

This is an approximation to Pi. It is accurate to 0.04025%.
Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - K.V.Iyer, Jun 16 2010, Jun 18 2010
The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - Peter Bala, Oct 12 2021

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 239.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.

Crossrefs

Programs

  • Magma
    I:=[3,1,4,2,8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
  • Mathematica
    CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
    Join[{3},LinearRecurrence[{1, 0, -1, 1},{1, 4, 2, 8},104]] (* Ray Chandler, Aug 26 2015 *)
    RealDigits[22/7,10,120][[1]] (* Harvey P. Dale, Oct 04 2021 *)

Formula

a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - Sascha Kurz, Mar 23 2002 [corrected by Jason Yuen, Aug 18 2024]
Equals 100*A021018 - 4 = 3 + A020806. - R. J. Mathar, Sep 30 2008
For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - Zak Seidov, Mar 26 2015
G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - Vincenzo Librandi, Mar 27 2015

Extensions

More terms from Sascha Kurz, Mar 23 2002
Alternative to broken link added by R. J. Mathar, Jun 18 2010

A242827 Primes formed by the initial digits of the decimal expansion of 1/14, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

7, 71, 71428571, 7142857142857, 7142857142857142857142857142857
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

a(6) has 104 digits. - Michel Marcus, May 26 2014

Crossrefs

Cf. A021018.
Corresponding sequences for 1/k: A242824 (k=7), A093676 (k=12), A242826 (k=13), A242828 (k=17), A242833 (k=19).

Programs

  • PARI
    lista(nn) = {v = [7,1,4,2,8,5]; n = 0; for (i=0, nn, n = 10*n+ v[(i % 6)+1]; if (ispseudoprime(n), print1(n, ", ")););} \\ Michel Marcus, May 26 2014

A216606 Decimal expansion of 360/7.

Original entry on oeis.org

5, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7
Offset: 2

Views

Author

Paul Curtz, Sep 10 2012

Keywords

Comments

A020806 preceded by a 5.
Number of degrees in the exterior angle of an equilateral heptagon. Since 1969, used in many (orbiform or Reuleaux) heptagonal coins. Zambia has a natural heptagonal coin. Brazil and Costa Rica have a coin with the natural heptagon inscribed in the coin's disk.

Examples

			51.42857...
		

Crossrefs

Programs

Formula

a(n) = 50 + 10*A020806(n).
After 5, of period 6: repeat [1, 4, 2, 8, 5, 7].
From Wesley Ivan Hurt, Jun 28 2016: (Start)
G.f.: x^3*(5-4*x+3*x^2+3*x^3+2*x^4) / (1-x+x^3-x^4).
a(n) = 9/2 + 11*cos(n*Pi)/6 + 5*cos(n*Pi/3)/3 + sqrt(3)*sin(n*Pi/3), n>2.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>6, a(n) = a(n-6) for n>8. (End)

A355068 Square array read by upwards antidiagonals: T(n,k) = k-th digit after the decimal point in decimal expansion of 1/n, for n >= 1 and k >= 1.

Original entry on oeis.org

0, 5, 0, 3, 0, 0, 2, 3, 0, 0, 2, 5, 3, 0, 0, 1, 0, 0, 3, 0, 0, 1, 6, 0, 0, 3, 0, 0, 1, 4, 6, 0, 0, 3, 0, 0, 1, 2, 2, 6, 0, 0, 3, 0, 0, 1, 1, 5, 8, 6, 0, 0, 3, 0, 0, 0, 0, 1, 0, 5, 6, 0, 0, 3, 0, 0, 0, 9, 0, 1, 0, 7, 6, 0, 0, 3, 0, 0, 0, 8, 0, 0, 1, 0, 1, 6, 0
Offset: 1

Views

Author

Chittaranjan Pardeshi, Jun 17 2022

Keywords

Comments

First row is all zeros since n=1 has all zeros after the decimal point.

Examples

			Array begins:
      k=1  2  3  4  5  6  7  8
  n=1:  0, 0, 0, 0, 0, 0, 0, 0,
  n=2:  5, 0, 0, 0, 0, 0, 0, 0,
  n=3:  3, 3, 3, 3, 3, 3, 3, 3,
  n=4:  2, 5, 0, 0, 0, 0, 0, 0,
  n=5:  2, 0, 0, 0, 0, 0, 0, 0,
  n=6:  1, 6, 6, 6, 6, 6, 6, 6,
  n=7:  1, 4, 2, 8, 5, 7, 1, 4,
  n=8:  1, 2, 5, 0, 0, 0, 0, 0,
Row n=7 is 1/7 = .142857142857..., whose digits after the decimal point are 1,4,2,8,5,7,1,4,2,8,5,7, ...
		

Crossrefs

Cf. A061480 (diagonal).
Cf. A355202 (binary).

Programs

  • PARI
    T(n,k) = my(r=lift(Mod(10,n)^(k-1))); floor(10*r/n)%10;
    
  • Python
    def T(n,k): return (10*pow(10,k-1,n)//n)%10

Formula

1/n = Sum_{k>=1} T(n, k)*10^-k, for n > 1.
Showing 1-4 of 4 results.