cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006095 Gaussian binomial coefficient [n, 2] for q = 2.

Original entry on oeis.org

0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Keywords

Comments

Number of 4-block coverings of an n-set where every element of the set is covered by exactly 3 blocks (if offset is 3), so a(n) = (1/4!)*(4^n-6*2^n+8). - Vladeta Jovovic, Feb 20 2001
Number of non-coprime pairs of polynomials (f,g) with binary coefficients where both f and g have degree n+1 and nonzero constant term. - Luca Mariot and Enrico Formenti, Sep 26 2016
Number of triplets found from the integers 1 to 2^n-1 by converting to binary and performing an XOR operation on the corresponding bits of each pair. Defining addition in this carryless way (0+0=1+1=0, 0+1=1+0=1), each triplet (A,B,C) has the property A+B=C, A+C=B and B+C=A. For example, n=3 gives the 7 triplets (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6). Each integer appears in the set of triplets 2^(n-1)-1 times, for example 3 for n=3. - Ian Duff, Oct 05 2019
Number of 2-dimensional vector subspaces of (Z_2)^n, so also number of Klein subgroups of the group (C_2)^n. - Robert FERREOL, Jul 28 2021

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

First differences: A006516.
Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), this sequence (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Maple
    a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
    seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
    A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
    a := n -> (2^n - 2)*(2^n - 1)/6:
    seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
  • Mathematica
    Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
    (* Next, using elementary symmetric functions *)
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203235 *)
    Table[a[n]/2, {n, 2, 32}]  (* A006095 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
  • PARI
    a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
  • Sage
    [gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^2/((1-x)(1-2x)(1-4x)).
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 = 4^n/6 - 2^(n-1) + 1/3.
Row sums of triangle A130324. - Gary W. Adamson, May 24 2007
a(n) = Stirling2(n+1,3) + Stirling2(n+1,4). - Zerinvary Lajos, Oct 04 2007; corrected by R. J. Mathar, Mar 19 2011
a(n) = A139250(2^(n-1) - 1), n >= 1. - Omar E. Pol, Mar 03 2011
a(n) = 4*a(n-1) + 2^(n-1) - 1, n >= 2. - Vincenzo Librandi, Mar 19 2011
a(0) = 0, a(1) = 0, a(2) = 1, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 22 2011
a(n) = Sum_{k=0..n-2} 2^k*C(2*n-k-2, k), n >= 2. - Johannes W. Meijer, Aug 19 2013
a(n) = Sum_{i=0..n-2, j=i..n-2} 2^{i+j} = 2^0 * (2^0 + 2^1 + ... + 2^(n-2)) + 2^1 * (2^1 + 2^2 + ... + 2^(n-2)) + ... + 2^(n-2) * 2^(n-2), n>1. - J. M. Bergot, May 08 2017
a(n) = a(n-1) + A000217(A000225(n-1)), n > 0. - Ivan N. Ianakiev, Dec 11 2017
E.g.f.: (2*exp(x)-3*exp(2*x)+exp(4*x))/6. - Paul Weisenhorn, Aug 22 2021
From Peter Bala, Jul 01 2025: (Start)
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(3*n)/b(n)*x^n/n ) = 1 + 7*x + 35*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following are examples of telescoping series:
Sum_{n >= 2} 2^n/a(n) = 6, follows from 1 - (1/6)*Sum_{k = 2..n} 2^k/a(k) = 1/(2^n - 1).
Sum_{n >= 2} 2^n/(a(n)*a(n+2)) = 6/49, follows from 1 - (49/6)*Sum_{k = 2..n} 2^k/(a(k)*a(k+2)) = 1/A006096(n+2);
Sum_{n >= 2} 4^n/(a(n)*a(n+2)) = 26/49, follows from 13 - (49/2)*Sum_{k = 2..n} 4^k/(a(k)*a(k+2)) = A086224(n)/A006096(n+2);
Sum_{n >= 2} 8^n/(a(n)*a(n+2)) = 129/49, follows from 43 - (49/3)*Sum_{k = 2..n} 8^k/(a(k)*a(k+2)) = A171479(n+1)/A006096(n+2). (End)

A006096 Gaussian binomial coefficient [n, 3] for q = 2.

Original entry on oeis.org

1, 15, 155, 1395, 11811, 97155, 788035, 6347715, 50955971, 408345795, 3269560515, 26167664835, 209386049731, 1675267338435, 13402854502595, 107225699266755, 857817047249091, 6862582190715075, 54900840777134275, 439207459223777475
Offset: 3

Views

Author

Keywords

Comments

42*a(n) is a maximum number of intercalates in a Latin square of order 2^n-1 (see A092237). - Eduard I. Vatutin, Apr 24 2025

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), this sequence (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).
Cf. A092237.

Programs

  • Magma
    r:=3; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2016
  • Maple
    seq((-1+7*2^n-14*4^n+8*8^n)/21,n=1..20);
    A006096:=1/(z-1)/(8*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
  • Mathematica
    Drop[CoefficientList[Series[x^3/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 8 x)), {x, 0, 30}], x], 3]
    QBinomial[Range[3,30],3,2] (* Harvey P. Dale, Jan 28 2013 *)
  • Sage
    [gaussian_binomial(n,3,2) for n in range(3,23)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^3/((1-x)(1-2x)(1-4x)(1-8x)).
(With a different offset) a(n) = (-1+7*2^n-14*4^n+8*8^n)/21. - James R. Buddenhagen, Dec 14 2003
From Peter Bala, Jul 01 2025: (Start)
a(n) = (q^n - 1)*(q^(n-1) - 1)*(q^(n-2) - 1)/((q^3 - 1)*(q^2 - 1)*(q - 1)) at q = 2.
G.f. with an offset of 0: exp( Sum_{n >= 1} b(4*n)/b(n)*x^n/n ) = 1 + 15*x + 155*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following series telescope:
Sum_{n >= 3} 2^n/(a(n)*a(n+3)) = 420/72075;
Sum_{n >= 3} 4^n/(a(n)*a(n+3)) = 3416/72075;
Sum_{n >= 3} 8^n/(a(n)*a(n+3)) = 28296/72075;
Sum_{n >= 3} 16^n/(a(n)*a(n+3)) = 244748/72075;
Sum_{n >= 3} 32^n/(a(n)*a(n+3)) = 2415315/72075. (End)

A006097 Gaussian binomial coefficient [n, 4] for q = 2.

Original entry on oeis.org

1, 31, 651, 11811, 200787, 3309747, 53743987, 866251507, 13910980083, 222984027123, 3571013994483, 57162391576563, 914807651274739, 14638597687734259, 234230965858250739, 3747802679431278579, 59965700687947706355, 959458073589354016755, 15351384078270441402355
Offset: 4

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), this sequence (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=4; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2016
    
  • Maple
    A006097:=-1/(z-1)/(4*z-1)/(2*z-1)/(8*z-1)/(16*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
  • Mathematica
    faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}];
    qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]);
    Table[qbin[n, 4, 2], {n, 4, 21}] (* Jean-François Alcover, Jul 21 2011 *)
    QBinomial[Range[4,30],4,2] (* Harvey P. Dale, Dec 10 2012 *)
  • PARI
    a(n)=(2^n-1)*(2^n-2)*(2^n-4)*(2^n-8)/20160 \\ Charles R Greathouse IV, Feb 19 2017
  • Sage
    [gaussian_binomial(n,4,2) for n in range(4,22)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^4/((1-x)*(1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)).
a(n) = (2^n-1)*(2^n-2)*(2^n-4)*(2^n-8)/20160. - Bruno Berselli, Aug 29 2011
From Peter Bala, Jul 01 2025: (Start)
G.f. with an offset of 0: exp( Sum_{n >= 1} b(5*n)/b(n)*x^n/n ) = 1 + 31*x + 651*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following series telescope:
Sum_{n >= 4} 2^n/a(n) = 120/7; Sum_{n >= 4} 4^n/a(n) = 2078/7;
Sum_{n >= 4} 8^n/a(n) = 41280/7.
Sum_{n >= 4} 2^n/(a(n)*a(n+4)) = 40/499999;
Sum_{n >= 4} 2^n/(a(n)*a(n+4)*a(n+8)) = 40/6981154678721773;
Sum_{n >= 4} 2^n/(a(n)*a(n+4)*a(n+8)*a(n+12)) = 40/6387876185324781622646124392439. (End)

A006110 Gaussian binomial coefficient [n, 5] for q = 2.

Original entry on oeis.org

1, 63, 2667, 97155, 3309747, 109221651, 3548836819, 114429029715, 3675639930963, 117843461817939, 3774561792168531, 120843139740969555, 3867895279362300499, 123787287537281350227, 3961427432158861458003, 126769425631762997934675, 4056681585917103881615955, 129814770207420913565727315
Offset: 5

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), this sequence (k = 5), A022189 - A022195 ( k = 6 thru 12).

Programs

  • Magma
    r:=5; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
  • Maple
    seq((1024*32^n-1984*16^n+1240*8^n-310*4^n+31*2^n-1)/9765,n=1..20);
    A006110:=1/(z-1)/(4*z-1)/(2*z-1)/(8*z-1)/(16*z-1)/(32*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
  • Mathematica
    Table[QBinomial[n, 5, 2], {n, 5, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
  • Sage
    [gaussian_binomial(n,5,2) for n in range(5,18)] # Zerinvary Lajos, May 24 2009
    

Formula

a(n+4) = (1024*32^n-1984*16^n+1240*8^n-310*4^n+31*2^n-1)/9765. - James R. Buddenhagen, Dec 14 2003
G.f.: x^5/((1-x)*(1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..5} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
a(n) = (2^n-16)*(2^n-8)*(2^n-4)*(2^n-2)*(2^n-1)/9999360. - Robert Israel, Feb 01 2018
G.f. with an offset of 0: exp( Sum_{n >= 1} b(6*n)/b(n)*x^n/n ) = 1 + 63*x + 2667*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025

A022189 Gaussian binomial coefficients [n, 6] for q = 2.

Original entry on oeis.org

1, 127, 10795, 788035, 53743987, 3548836819, 230674393235, 14877590196755, 955841412523283, 61291693863308051, 3926442969043883795, 251413193158549532435, 16094312257426532376339, 1030159771762835353435923
Offset: 6

Views

Author

Keywords

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), this sequence (k = 6), A022190 - A022195 (k = 7 thru 12).

Programs

  • Magma
    r:=6; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Mathematica
    Table[QBinomial[n, 6, 2], {n, 6, 24}] (* Vincenzo Librandi, Aug 03 2016 *)
  • PARI
    r=6; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,6,2) for n in range(6,20)] # Zerinvary Lajos, May 24 2009
    

Formula

a(n) = Product_{i=1..6} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. with an offset of 0: exp( Sum_{n >= 1} b(7*n)/b(n)*x^n/n ) = 1 + 127*x + 10795*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025

Extensions

Offset changed by Vincenzo Librandi, Aug 03 2016

A022190 Gaussian binomial coefficients [n, 7] for q = 2.

Original entry on oeis.org

1, 255, 43435, 6347715, 866251507, 114429029715, 14877590196755, 1919209135381395, 246614610741341843, 31627961868755063955, 4052305562169692070035, 518946525150879134496915, 66441249531569955747981459
Offset: 7

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=7; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
    
  • Mathematica
    Table[QBinomial[n, 7, 2], {n, 7, 24}] (* Vincenzo Librandi, Aug 02 2016 *)
  • PARI
    r=7; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,7,2) for n in range(7,20)] # Zerinvary Lajos, May 25 2009
    

Formula

G.f.: x^7/((1-x)*(1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x)*(1-64*x)*(1-128*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..7} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 02 2016
G.f. with an offset of 0: exp( Sum_{n >= 1} b(8*n)/b(n)*x^n/n ) = 1 + 255*x + 43435*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025

Extensions

Changed offset by Vincenzo Librandi, Aug 02 2016

A022191 Gaussian binomial coefficients [n, 8] for q = 2.

Original entry on oeis.org

1, 511, 174251, 50955971, 13910980083, 3675639930963, 955841412523283, 246614610741341843, 63379954960524853651, 16256896431763117598611, 4165817792093527797314451, 1066968301301093995246996371, 273210326382611632738979052435
Offset: 8

Views

Author

Keywords

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=8; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Mathematica
    Table[QBinomial[n, 8, 2], {n, 8, 40}] (* Vincenzo Librandi, Aug 03 2016 *)
  • PARI
    r=8; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,8,2) for n in range(8,20)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. with an offset of 0: exp( Sum_{n >= 1} b(9*n)/b(n)*x^n/n ) = 1 + 511*x +174251*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025

Extensions

Offset changed by Vincenzo Librandi, Aug 03 2016

A022192 Gaussian binomial coefficients [n, 9] for q = 2.

Original entry on oeis.org

1, 1023, 698027, 408345795, 222984027123, 117843461817939, 61291693863308051, 31627961868755063955, 16256896431763117598611, 8339787869494479328087443, 4274137206973266943778085267, 2189425218271613769209626653075
Offset: 9

Views

Author

Keywords

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=9; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Maple
    seq(eval(expand(QDifferenceEquations:-QBinomial(n,9,q)),q=2),n=9..50);
  • Mathematica
    QBinomial[Range[9,20],9,2] (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    r=9; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,9,2) for n in range(9,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 02 2016
G.f.: x^9/Product_{0<=i<=9} (1-2^i*x). - Robert Israel, Apr 23 2017
G.f. with an offset of 0: exp( Sum_{n >= 1} b(10*n)/b(n)*x^n/n ) = 1 + 1023*x + 698027*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025

Extensions

Offset changed by Vincenzo Librandi, Aug 03 2016

A022193 Gaussian binomial coefficients [n, 10] for q = 2.

Original entry on oeis.org

1, 2047, 2794155, 3269560515, 3571013994483, 3774561792168531, 3926442969043883795, 4052305562169692070035, 4165817792093527797314451, 4274137206973266943778085267, 4380990637147598617372537398675
Offset: 10

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=10; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Mathematica
    Table[QBinomial[n, 10, 2], {n, 10, 40}] (* Vincenzo Librandi, Aug 03 2016 *)
  • PARI
    r=10; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,10,2) for n in range(10,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(11*n)/b(n)*x^n/n ) = 1 + 2047*x + 2794155*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 03 2025

A022194 Gaussian binomial coefficients [n, 11] for q = 2.

Original entry on oeis.org

1, 4095, 11180715, 26167664835, 57162391576563, 120843139740969555, 251413193158549532435, 518946525150879134496915, 1066968301301093995246996371, 2189425218271613769209626653075, 4488323837657412597958687922896275
Offset: 11

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

Crossrefs

Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), A006095 (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Magma
    r:=11; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
    
  • Mathematica
    QBinomial[Range[11,30],11,2] (* Harvey P. Dale, Oct 21 2014 *)
  • PARI
    r=11; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
  • Sage
    [gaussian_binomial(n,11,2) for n in range(11,22)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..11} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(12*n)/b(n)*x^n/n ) = 1 + 4095*x + 11180715*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 03 2025
Showing 1-10 of 10 results.