A047969
Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0
Array a begins:
[n\k][0 1 2 3 4 5 6 ...
[0] 1 1 1 1 1 1 1 ...
[1] 1 3 7 15 31 63 ...
[2] 1 5 19 65 211 ...
[3] 1 7 37 175 ...
...
Triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 1 3 1
3: 1 5 7 1
4: 1 7 19 15 1
5: 1 9 37 65 31 1
6: 1 11 61 175 211 63 1
7: 1 13 91 369 781 665 127 1
8: 1 15 127 671 2101 3367 2059 255 1
9: 1 17 169 1105 4651 11529 14197 6305 511 1
10: 1 19 217 1695 9031 31031 61741 58975 19171 1023 1
... - _Wolfdieter Lang_, May 07 2021
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
Row n sequences of array a:
A000012,
A000225(k+1),
A001047(k+1),
A005061(k+1),
A005060(k+1),
A005062(k+1),
A016169(k+1),
A016177(k+1),
A016185(k+1),
A016189(k+1),
A016195(k+1),
A016197(k+1).
Column k sequences of array a: (nexus numbers):
A000012,
A005408,
A003215,
A005917(n+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Cf.
A343237 (row reversed triangle).
-
Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
-
T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */
A022525
Nexus numbers (n+1)^9-n^9.
Original entry on oeis.org
1, 511, 19171, 242461, 1690981, 8124571, 30275911, 93864121, 253202761, 612579511, 1357947691, 2801832661, 5444719021, 10056547411, 17782312591, 30276117361, 49868399761, 79771413871, 124328407411, 189312302221, 282280046581, 412989171211, 593883443671
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[(n+1)^9-n^9: n in [0..30]]; // Vincenzo Librandi, Nov 22 2011
-
q=9;lst={};Do[AppendTo[lst,(n+1)^q-n^q],{n,0,2*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
Table[(n+1)^9-n^9,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
a(n)=(n+1)^9-n^9 \\ Charles R Greathouse IV, Oct 07 2015
A022527
Nexus numbers: a(n) = (n+1)^11 - n^11.
Original entry on oeis.org
1, 2047, 175099, 4017157, 44633821, 313968931, 1614529687, 6612607849, 22791125017, 68618940391, 185311670611, 457696700077, 1049152023349, 2257404775627, 4600190689711, 8942430185041, 16679710263217, 29996513771599, 52221848818987, 88309741101781
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[(n+1)^11-n^11: n in [0..40]]; // Vincenzo Librandi, Jan 26 2011
-
b:=11: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
-
q=11; Table[(n+1)^q-n^q, {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
Differences[Range[0, 20]^11] (* Harvey P. Dale, Jan 25 2011 *)
-
for(n=0,20, print1((n+1)^11 - n^11, ", ")) \\ G. C. Greubel, Feb 27 2018
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
Showing 1-5 of 5 results.
Comments