cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A047969 Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0

Views

Author

Keywords

Comments

If each row started with an initial 0 (i.e., a(n,k) = (n+1)^k - n^k) then each row would be the binomial transform of the preceding row. - Henry Bottomley, May 31 2001
a(n-1, k-1) is the number of ordered k-tuples of positive integers such that the largest of these integers is n. - Alford Arnold, Sep 07 2005
From Alford Arnold, Jul 21 2006: (Start)
The sequences in A047969 can also be calculated using the Eulerian Array (A008292) and Pascal's Triangle (A007318) as illustrated below: (cf. A101095).
1 1 1 1 1 1
1 1 1 1 1 1
-----------------------------------------
1 2 3 4 5 6
1 2 3 4 5
1 3 5 7 9 11
-----------------------------------------
1 3 6 10 15 21
4 12 24 40 60
1 3 6 10
1 7 19 37 61 91
-----------------------------------------
1 4 10 20 35 56
11 44 110 220 385
11 44 110 220
1 4 10
1 15 65 175 369 671
----------------------------------------- (End)
From Peter Bala, Oct 26 2008: (Start)
The above remarks of Alford Arnold may be summarized by saying that (the transpose of) this array is the Hilbert transform of the triangle of Eulerian numbers A008292 (see A145905 for the definition of the Hilbert transform). In this context, A008292 is best viewed as the array of h-vectors of permutohedra of type A. See A108553 for the Hilbert transform of the array of h-vectors of type D permutohedra. Compare this array with A009998.
The polynomials n^k - (n-1)^k, k = 1,2,3,..., which give the nonzero entries in the columns of this array, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re s = 1/2 in the complex plane. See A019538 for the connection between the polynomials n^k - (n-1)^k and the Stirling polynomials of the simplicial complexes dual to the type A permutohedra.
(End)
Empirical: (n+1)^(k+1) - n^(k+1) is the number of first differences of length k+1 arrays of numbers in 0..n, k > 0. - R. H. Hardin, Jun 30 2013
a(n-1, k-1) is the number of bargraphs of width k and height n. Examples: a(1,2) = 7 because we have [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], and [2,2,2]; a(2,1) = 5 because we have [1,3], [2,3], [3,1], [3,2], and [3,3] (bargraphs are given as compositions). This comment is equivalent to A. Arnold's Sep 2005 comment. - Emeric Deutsch, Jan 30 2017

Examples

			Array a begins:
  [n\k][0  1   2    3    4   5  6  ...
  [0]   1  1   1    1    1   1  1  ...
  [1]   1  3   7   15   31  63  ...
  [2]   1  5  19   65  211  ...
  [3]   1  7  37  175  ...
  ...
Triangle T begins:
  n\m   0   1    2     3     4      5      6      7      8     9  10 ...
  0:    1
  1:    1   1
  2:    1   3    1
  3:    1   5    7     1
  4:    1   7   19    15     1
  5:    1   9   37    65    31      1
  6:    1  11   61   175   211     63      1
  7:    1  13   91   369   781    665    127      1
  8:    1  15  127   671  2101   3367   2059    255      1
  9:    1  17  169  1105  4651  11529  14197   6305    511     1
  10:   1  19  217  1695  9031  31031  61741  58975  19171  1023   1
  ...  - _Wolfdieter Lang_, May 07 2021
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Cf. A047970.
Cf. A009998, A108553 (Hilbert transform of array of h-vectors of type D permutohedra), A145904, A145905.
Row n sequences of array a: A000012, A000225(k+1), A001047(k+1), A005061(k+1), A005060(k+1), A005062(k+1), A016169(k+1), A016177(k+1), A016185(k+1), A016189(k+1), A016195(k+1), A016197(k+1).
Column k sequences of array a: (nexus numbers): A000012, A005408, A003215, A005917(n+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Cf. A343237 (row reversed triangle).

Programs

  • Mathematica
    Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
  • Maxima
    T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */

Formula

From Vladimir Kruchinin: (Start)
O.g.f. of e.g.f of rows of array: ((1-x)*exp(y))/(1-x*exp(y))^2.
T(n,m) = Sum_{k=0..m} k!*(-1)^(m+k)*Stirling2(m,k)*C(n+k-1,n), T(n,0)=1.(End)
From Wolfdieter Lang, May 07 2021: (Start)
T(n,m) = a(n-m,m) = (n-m+1)^(m+1) - (n-m)^(m+1), n >= 0, m = 0, 1,..., n.
O.g.f. column k of the array: polylog(-(k+1), x)*(1-x)/x. See the Peter Bala comment above, and the Eulerian triangle A008292 formula by Vladeta Jovovic, Sep 02 2002.
E.g.f. of e.g.f. of row of the array: exp(y)*(1 + x*(exp(y) - 1))*exp(x*exp(y)).
O.g.f. of triangle's exponential row polynomials R(n, y) = Sum_{m=0} T(n, m)*(y^m)/m!: G(x, y) = exp(x*y)*(1 - x)/(1 - x*exp(x*y))^2. (End)

A022524 Nexus numbers (n+1)^8 - n^8.

Original entry on oeis.org

1, 255, 6305, 58975, 325089, 1288991, 4085185, 11012415, 26269505, 56953279, 114358881, 215622815, 385749025, 660058335, 1087101569, 1732076671, 2680790145, 4044203135, 5963602465, 8616436959, 12222859361, 17053014175, 23435111745, 31764328895, 42512576449
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=7 of array A047969.

Programs

Formula

G.f.: (x+1)*(x^6+246*x^5+4047*x^4+11572*x^3+4047*x^2+246*x+1) / (x-1)^8. - Colin Barker, Dec 21 2012
G.f.: polylog(-8, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Stefan Steinerberger, Apr 09 2006
More terms from Colin Barker, Dec 21 2012

A022526 Nexus numbers (n+1)^10-n^10.

Original entry on oeis.org

1, 1023, 58025, 989527, 8717049, 50700551, 222009073, 791266575, 2413042577, 6513215599, 15937424601, 35979939623, 75941127625, 151396163127, 287395735649, 522861237151, 916482272673, 1554473326175, 2560599031177, 4108933742199, 6439880978201, 9880041813223
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=9 of A047969.
Cf. A008454 (n^10).

Programs

  • Magma
    [(n+1)^10-n^10: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Maple
    b:=10: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
  • Mathematica
    Table[(n+1)^10-n^10,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
  • PARI
    for(n=0,20, print1((n+1)^10 - n^10, ", ")) \\ G. C. Greubel, Feb 27 2018

Formula

G.f.: (x +1)*(x^8 +1012*x^7 +46828*x^6 +408364*x^5 +901990*x^4 +408364*x^3 +46828*x^2 +1012*x +1) / (x -1)^10. - Colin Barker, Dec 22 2012
a(n) = A008454(n+1) - A008454(n). - Michel Marcus, Feb 28 2018
G.f.: polylog(-10, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Colin Barker, Dec 22 2012

A254643 Third partial sums of ninth powers (A001017).

Original entry on oeis.org

1, 515, 21225, 324275, 2862790, 17714466, 85232910, 339635850, 1168343775, 3571356685, 9906622271, 25333920885, 60457751900, 135939162100, 290221510860, 592024274916, 1159935330765, 2192313968775, 4011847886725, 7130537084615
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers:    1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums:  1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums:  1, 515, 21225, 324275, 2862790, ... (this sequence)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(-50 +84n +127n^2 -204n^3 -97n^4 +126n^5 +98n^6 +24n^7 +2n^8)/2640, {n, 20}] (* or *)
    CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^13, {x, 0, 19}], x] (* Ancora *)
    Accumulate[Accumulate[Accumulate[Range[10]^9]]] (* Alonso del Arte, Feb 09 2015 *)
  • PARI
    vector(30, n, m=n+3; binomial(m,4)*(2*(n*m)^4 -10*(n*m)^3 +11*(n*m)^2 +28*(n*m) -50)/110) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +502*x +14608*x^2 +88234*x^3 +156190*x^4 +88234*x^5 +14608*x^6 +502*x^7 +x^8)/(1-x)^13.
a(n) = n*(1+n)*(2+n)*(3+n)*(-50 +84*n +127*n^2 -204*n^3 -97*n^4 +126*n^5 +98*n^6 +24*n^7 +2*n^8)/2640.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + n^9.

Extensions

Edited by Alonso del Arte and Bruno Berselli, Feb 10 2015

A255179 Second differences of ninth powers (A001017).

Original entry on oeis.org

1, 510, 18660, 223290, 1448520, 6433590, 22151340, 63588210, 159338640, 359376750, 745368180, 1443884970, 2642886360, 4611828390, 7725765180, 12493804770, 19592282400, 29903014110, 44556993540, 64983894810, 92967744360, 130709124630, 180894272460
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 510, 18660, 223290, 1448520, ... (this sequence)
First differences:   1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers:    1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums:  1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums:  1, 515, 21225, 324275, 2862790, ... (A254643)
		

Crossrefs

Programs

  • Magma
    [1] cat [6*n*(3+28*n^2+42*n^4+12*n^6): n in [1..30]]; // Vincenzo Librandi, Mar 12 2015
  • Mathematica
    Join[{1}, Table[6 n (3 + 28 n^2 + 42 n^4 + 12 n^6), {n, 1, 30}]]
    Join[{1},Differences[Range[0,30]^9,2]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,510,18660,223290,1448520,6433590,22151340,63588210,159338640},30] (* Harvey P. Dale, Jan 26 2019 *)

Formula

G.f.: (1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1 - x)^8.
a(n) = 6*n*(3 + 28*n^2 + 42*n^4 + 12*n^6) for n>0, a(0)=1.

Extensions

Corrected g.f. by Bruno Berselli, Feb 25 2015
Offset changed by Bruno Berselli, Mar 20 2015

A343237 Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2021

Keywords

Comments

This is the row reversed version of the triangle A047969(n, m). The corresponding array A047969 is a(n, k) = A(k, n) (transposed of array A).
A(n-1, k-1) = k^n - (k-1)^n gives the number of n-digit numbers with digits from K = {1, 2, 3, ..., k} such that any digit from K, say k, appears at least once. Motivated by a comment in A005061 by Enrique Navarrete, the instance k=4 for n >= 1 (the column 3 in array A), and the d = 3 (sub)-diagonal sequence of T for m >= 0.

Examples

			The array A begins:
n\k  0  1   2    3     4     5     6      7      8      9 ...
-------------------------------------------------------------
0:   1  1   1    1     1     1     1      1      1      1 ...
1:   1  3   5    7     9    11    13     15     17     19 ...
2:   1  7  19   37    61    91   127    169    217    271 ...
3:   1 15  65  175   369   671  1105   1695   2465   3439 ...
4:   1 31 211  781  2101  4651  9031  15961  26281  40951 ...
5:   1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m   0    1     2     3     4     5    6    7   8  9 10 ...
-------------------------------------------------------------
0:    1
1:    1    1
2:    1    3     1
3:    1    7     5     1
4:    1   15    19     7     1
5:    1   31    65    37     9     1
6:    1   63   211   175    61    11    1
7:    1  127   665   781   369    91   13    1
8:    1  255  2059  3367  2101   671  127   15   1
9:    1  511  6305 14197 11529  4651 1105  169  17  1
10:   1 1023 19171 58975 61741 31031 9031 1695 217 19  1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is,  3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4):  144, 414, 441;  244, 424, 442;  344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
		

Crossrefs

Cf. A005061, A008292, A047969 (reversed), A045531 (central diagonal), A047970 (row sums of triangle).
Row sequences of array A (nexus numbers): A000012, A005408, A003215, A005917(k+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Column sequences of array A: A000012, A000225(n+1), A001047(n+1), A005061(n+1), A005060(n+1), A005062(n+1), A016169(n+1), A016177(n+1), A016185(n+1), A016189(n+1), A016195(n+1), A016197(n+1).

Programs

  • Maple
    egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
    cx := n -> series(n!*coeff(ser, x, n), y, 12):
    Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
    for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
  • Mathematica
    A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)

Formula

Array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0.
A(n-1, k-1) = Sum_{j=1} binomial(n, j)*(k-1)^(n-j) = Sum_{j=0} binomial(n, j)*(k-1)^(n-j) - (k-1)^n = (1+(k-1))^n - (k-1)^n = k^n - (k-1)^n (from the combinatorial comment on A(n-1, k-1) above).
O.g.f. row n of array A: RA(n, x) = P(n, x)/(1 - x)^n, with P(n, x) = Sum_{m=0..n} A008292(n+1, m+1)*x^m, (the Eulerian number triangle A008292 has offset 1) for n >= 0. (See the Oct 26 2008 comment in A047969 by Peter Bala). RA(n, x) = polylog(-(n+1), x)*(1-x)/x. (For P(n, x) see the formula by Vladeta Jovovic, Sep 02 2002.)
E.g.f. of e.g.f.s of the rows of array A: EE(x, y) = exp(x)*(1 + y*(exp(x) - 1))*exp(y*exp(x)), that is A(n, k) = [y^k/k!][x^n/n!] EE(x, y).
Triangle T(n, m) = A(n-m, m) = (m+1)^(n-m+1) - m^(n-m+1), n >= 0, m = 0, 1, ..., n.
E.g.f.: -(exp(x)-1)/(x*exp(x)*y-x). - Vladimir Kruchinin, Nov 02 2022

A341050 Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2

Views

Author

Robert P. P. McKone, Feb 04 2021

Keywords

Examples

			For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
  1
-----------------Slice 2-----------------
    1
  1  3
-----------------Slice 3-----------------
      1
    1  3
  1  5  8
-----------------Slice 4-----------------
        1
      1  3
    1  5   8
  1  7  21  19
-----------------Slice 5-----------------
          1
        1  3
      1  5   8
    1  7  21  20
  1  9  40  81  43
-----------------Slice 6-----------------
              1
           1    3
        1    5     8
      1   7    21    20
    1   9   40    81    47
  1  11  65   208   295   94
-----------------Slice 7-----------------
                 1
              1     3
           1     5     8
         1    7     21    20
      1    9    40     81      48
    1   11   65    208     297     107
  1  13   96   425    1024    1037    201
		

Crossrefs

Cf. A340156 (r=2), A340242 (r=3).
Cf. A008466 (n=2, r=2), A186244 (n=3, r=2), A050231 (n=2, r=3), A231430 (n=3, r=3).
Cf. A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf. A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].

Programs

  • Mathematica
    m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten

A255183 Third differences of ninth powers (A001017).

Original entry on oeis.org

1, 509, 18150, 204630, 1225230, 4985070, 15717750, 41436870, 95750430, 200038110, 385991430, 698516790, 1199001390, 1968942030, 3113936790, 4768039590, 7098477630, 10310731710, 14653979430, 20426901270
Offset: 0

Views

Author

Luciano Ancora, Mar 18 2015

Keywords

Examples

			Third differences:   1, 509, 18150, 204630, 1225230, ...  (this sequence)
Second differences:  1, 510, 18660, 223290, 1448520, ...  (A255179)
First differences:   1, 511, 19171, 242461, 1690981, ...  (A022525)
---------------------------------------------------------------------
The ninth powers:    1, 512, 19683, 262144, 1953125, ...  (A001017)
---------------------------------------------------------------------
		

Crossrefs

Programs

  • Magma
    [1,509] cat [6*(84*n^6-252*n^5+630*n^4-840*n^3+756*n^2-378*n+85): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
  • Mathematica
    Join[{1, 509}, Table[6 (84 n^6 - 252 n^5 + 630 n^4 - 840 n^3 + 756 n^2 - 378 n + 85), {n, 2, 30}]]
    Join[{1,509},Differences[Range[0,20]^9,3]] (* Harvey P. Dale, Apr 24 2015 *)

Formula

G.f.: (1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1 - x)^7.
a(n) = 6*(84*n^6 - 252*n^5 + 630*n^4 - 840*n^3 + 756*n^2 - 378*n + 85) for n>1, a(0)=1, a(1)=509.

Extensions

Edited by Bruno Berselli, Mar 20 2015
Showing 1-8 of 8 results.