A047969
Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0
Array a begins:
[n\k][0 1 2 3 4 5 6 ...
[0] 1 1 1 1 1 1 1 ...
[1] 1 3 7 15 31 63 ...
[2] 1 5 19 65 211 ...
[3] 1 7 37 175 ...
...
Triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 1 3 1
3: 1 5 7 1
4: 1 7 19 15 1
5: 1 9 37 65 31 1
6: 1 11 61 175 211 63 1
7: 1 13 91 369 781 665 127 1
8: 1 15 127 671 2101 3367 2059 255 1
9: 1 17 169 1105 4651 11529 14197 6305 511 1
10: 1 19 217 1695 9031 31031 61741 58975 19171 1023 1
... - _Wolfdieter Lang_, May 07 2021
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
Row n sequences of array a:
A000012,
A000225(k+1),
A001047(k+1),
A005061(k+1),
A005060(k+1),
A005062(k+1),
A016169(k+1),
A016177(k+1),
A016185(k+1),
A016189(k+1),
A016195(k+1),
A016197(k+1).
Column k sequences of array a: (nexus numbers):
A000012,
A005408,
A003215,
A005917(n+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Cf.
A343237 (row reversed triangle).
-
Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
-
T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */
A022524
Nexus numbers (n+1)^8 - n^8.
Original entry on oeis.org
1, 255, 6305, 58975, 325089, 1288991, 4085185, 11012415, 26269505, 56953279, 114358881, 215622815, 385749025, 660058335, 1087101569, 1732076671, 2680790145, 4044203135, 5963602465, 8616436959, 12222859361, 17053014175, 23435111745, 31764328895, 42512576449
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[(n+1)^8-n^8: n in [0..30]]; // Vincenzo Librandi, Nov 22 2011
-
Table[(n + 1)^8 - n^8, {n, 0, 25}] (* Stefan Steinerberger, Apr 09 2006 *)
Last[#]-First[#]&/@Partition[Range[0,30]^8,2,1] (* Harvey P. Dale, Nov 24 2013 *)
Differences[Range[0,30]^8] (* Harvey P. Dale, Sep 24 2021 *)
-
a(n)=(n+1)^8-n^8 \\ Charles R Greathouse IV, Oct 07 2015
A022526
Nexus numbers (n+1)^10-n^10.
Original entry on oeis.org
1, 1023, 58025, 989527, 8717049, 50700551, 222009073, 791266575, 2413042577, 6513215599, 15937424601, 35979939623, 75941127625, 151396163127, 287395735649, 522861237151, 916482272673, 1554473326175, 2560599031177, 4108933742199, 6439880978201, 9880041813223
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[(n+1)^10-n^10: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
-
b:=10: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
-
Table[(n+1)^10-n^10,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
for(n=0,20, print1((n+1)^10 - n^10, ", ")) \\ G. C. Greubel, Feb 27 2018
A254643
Third partial sums of ninth powers (A001017).
Original entry on oeis.org
1, 515, 21225, 324275, 2862790, 17714466, 85232910, 339635850, 1168343775, 3571356685, 9906622271, 25333920885, 60457751900, 135939162100, 290221510860, 592024274916, 1159935330765, 2192313968775, 4011847886725, 7130537084615
Offset: 1
First differences: 1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums: 1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums: 1, 515, 21225, 324275, 2862790, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
List([1..30], n-> Binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110); # G. C. Greubel, Aug 28 2019
-
[Binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
seq(binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110, n=1..30); # G. C. Greubel, Aug 28 2019
-
Table[n(1+n)(2+n)(3+n)(-50 +84n +127n^2 -204n^3 -97n^4 +126n^5 +98n^6 +24n^7 +2n^8)/2640, {n, 20}] (* or *)
CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^13, {x, 0, 19}], x] (* Ancora *)
Accumulate[Accumulate[Accumulate[Range[10]^9]]] (* Alonso del Arte, Feb 09 2015 *)
-
vector(30, n, m=n+3; binomial(m,4)*(2*(n*m)^4 -10*(n*m)^3 +11*(n*m)^2 +28*(n*m) -50)/110) \\ G. C. Greubel, Aug 28 2019
-
[binomial(n+3,4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110 for n in (1..30)] # G. C. Greubel, Aug 28 2019
A255179
Second differences of ninth powers (A001017).
Original entry on oeis.org
1, 510, 18660, 223290, 1448520, 6433590, 22151340, 63588210, 159338640, 359376750, 745368180, 1443884970, 2642886360, 4611828390, 7725765180, 12493804770, 19592282400, 29903014110, 44556993540, 64983894810, 92967744360, 130709124630, 180894272460
Offset: 0
Second differences: 1, 510, 18660, 223290, 1448520, ... (this sequence)
First differences: 1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums: 1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums: 1, 515, 21225, 324275, 2862790, ... (A254643)
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[1] cat [6*n*(3+28*n^2+42*n^4+12*n^6): n in [1..30]]; // Vincenzo Librandi, Mar 12 2015
-
Join[{1}, Table[6 n (3 + 28 n^2 + 42 n^4 + 12 n^6), {n, 1, 30}]]
Join[{1},Differences[Range[0,30]^9,2]] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,510,18660,223290,1448520,6433590,22151340,63588210,159338640},30] (* Harvey P. Dale, Jan 26 2019 *)
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A255183
Third differences of ninth powers (A001017).
Original entry on oeis.org
1, 509, 18150, 204630, 1225230, 4985070, 15717750, 41436870, 95750430, 200038110, 385991430, 698516790, 1199001390, 1968942030, 3113936790, 4768039590, 7098477630, 10310731710, 14653979430, 20426901270
Offset: 0
Third differences: 1, 509, 18150, 204630, 1225230, ... (this sequence)
Second differences: 1, 510, 18660, 223290, 1448520, ... (A255179)
First differences: 1, 511, 19171, 242461, 1690981, ... (A022525)
---------------------------------------------------------------------
The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017)
---------------------------------------------------------------------
-
[1,509] cat [6*(84*n^6-252*n^5+630*n^4-840*n^3+756*n^2-378*n+85): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
-
Join[{1, 509}, Table[6 (84 n^6 - 252 n^5 + 630 n^4 - 840 n^3 + 756 n^2 - 378 n + 85), {n, 2, 30}]]
Join[{1,509},Differences[Range[0,20]^9,3]] (* Harvey P. Dale, Apr 24 2015 *)
Showing 1-8 of 8 results.
Comments