A001016
Eighth powers: a(n) = n^8.
Original entry on oeis.org
0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176
Offset: 0
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
-
[n^8 : n in [0..50]]; // Wesley Ivan Hurt, Apr 01 2016
-
A001016:=n->n^8: seq(A001016(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2016
-
Table[n^8, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
-
A001016(n):=n^8$
makelist(A001016(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A001016(n)=n^8 \\ Charles R Greathouse IV, Sep 24 2015
-
A001016 = lambda n: n**8 # M. F. Hasler, Jul 03 2025
A047969
Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0
Array a begins:
[n\k][0 1 2 3 4 5 6 ...
[0] 1 1 1 1 1 1 1 ...
[1] 1 3 7 15 31 63 ...
[2] 1 5 19 65 211 ...
[3] 1 7 37 175 ...
...
Triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 1 3 1
3: 1 5 7 1
4: 1 7 19 15 1
5: 1 9 37 65 31 1
6: 1 11 61 175 211 63 1
7: 1 13 91 369 781 665 127 1
8: 1 15 127 671 2101 3367 2059 255 1
9: 1 17 169 1105 4651 11529 14197 6305 511 1
10: 1 19 217 1695 9031 31031 61741 58975 19171 1023 1
... - _Wolfdieter Lang_, May 07 2021
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
Row n sequences of array a:
A000012,
A000225(k+1),
A001047(k+1),
A005061(k+1),
A005060(k+1),
A005062(k+1),
A016169(k+1),
A016177(k+1),
A016185(k+1),
A016189(k+1),
A016195(k+1),
A016197(k+1).
Column k sequences of array a: (nexus numbers):
A000012,
A005408,
A003215,
A005917(n+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Cf.
A343237 (row reversed triangle).
-
Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
-
T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */
A022523
Nexus numbers (n+1)^7-n^7.
Original entry on oeis.org
1, 127, 2059, 14197, 61741, 201811, 543607, 1273609, 2685817, 5217031, 9487171, 16344637, 26916709, 42664987, 65445871, 97576081, 141903217, 201881359, 281651707, 386128261, 521088541, 693269347, 910467559, 1181645977, 1517044201, 1928294551, 2428543027
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- H. D. Nguyen, D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; citseerx. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[(n+1)^7-n^7: n in [0..30]]; // Vincenzo Librandi, Nov 22 2011
-
q=7;lst={};Do[AppendTo[lst,(n+1)^q-n^q],{n,0,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
Table[(n+1)^7-n^7,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,127,2059,14197,61741,201811,543607},30] (* Harvey P. Dale, Apr 17 2017 *)
Differences[Range[0,50]^7] (* Harvey P. Dale, Jun 07 2023 *)
-
a(n)=(n+1)^7-n^7 \\ Charles R Greathouse IV, Sep 28 2015
A022525
Nexus numbers (n+1)^9-n^9.
Original entry on oeis.org
1, 511, 19171, 242461, 1690981, 8124571, 30275911, 93864121, 253202761, 612579511, 1357947691, 2801832661, 5444719021, 10056547411, 17782312591, 30276117361, 49868399761, 79771413871, 124328407411, 189312302221, 282280046581, 412989171211, 593883443671
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[(n+1)^9-n^9: n in [0..30]]; // Vincenzo Librandi, Nov 22 2011
-
q=9;lst={};Do[AppendTo[lst,(n+1)^q-n^q],{n,0,2*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
Table[(n+1)^9-n^9,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
a(n)=(n+1)^9-n^9 \\ Charles R Greathouse IV, Oct 07 2015
A101095
Fourth difference of fifth powers (A000584).
Original entry on oeis.org
1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive Machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 14 |
A010966 | ....... | ....... | ....... | ....... |
A254872 | ....... | .......
--------------------------------------------------------------------------------------
-
I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
-
a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
-
[1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 23 2015
A254642
Third partial sums of eighth powers (A001016).
Original entry on oeis.org
1, 259, 7335, 86765, 629174, 3314178, 13906578, 49183590, 152191935, 422931613, 1075761505, 2540663307, 5633367740, 11829663860, 23692442292, 45516670332, 84278105421, 150996708135, 262656041515, 444856105561, 735419759634, 1189222877270
Offset: 1
First differences: 1, 255, 6305, 58975, 325089, ...(A022524)
--------------------------------------------------------------------
The eighth powers: 1, 256, 6561, 65536, 390625, ...(A001016)
--------------------------------------------------------------------
First partial sums: 1, 257, 6818, 72354, 462979, ...(A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ...(A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ...(this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
Table[n (1 + n) (2 + n) (3 + n) (3 + 2 n) (1 + 36 n - 69 n^2 + 45 n^4 + 18 n^5 + 2 n^6)/3960, {n, 22}]
Accumulate[Accumulate[Accumulate[Range[22]^8]]]
CoefficientList[Series[(1 + 247 x + 4293 x^2 + 15619 x^3 + 15619 x^4 + 4293 x^5 + 247 x^6 + x^7)/(- 1 + x)^12, {x, 0, 22}], x]
-
a(n)=n*(1+n)*(2+n)*(3+n)*(3+2*n)*(1+36*n-69*n^2+45*n^4+18*n^5+2*n^6)/3960 \\ Charles R Greathouse IV, Oct 07 2015
A255178
Second differences of eighth powers (A001016).
Original entry on oeis.org
1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0
Second differences: 1, 254, 6050, 52670, 266114, ... (this sequence)
First differences: 1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers: 1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums: 1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
- Luciano Ancora, Table of n, a(n) for n = 0..1000
- Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
-
Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)
A255182
Third differences of eighth powers (A001016).
Original entry on oeis.org
1, 253, 5796, 46620, 213444, 697788, 1832292, 4131036, 8329860, 15426684, 26721828, 43858332, 68862276, 104183100, 152733924, 217931868, 303738372, 414699516, 555986340, 733435164, 953587908, 1223732412, 1551942756, 1947119580, 2419030404, 2978349948
Offset: 0
Third differences: 1, 253, 5796, 46620, 213444, ... (this sequence)
Second differences: 1, 254, 6050, 52670, 266114, ... (A255178)
First differences: 1, 255, 6305, 58975, 325089, ... (A022524)
---------------------------------------------------------------------
The seventh powers: 1, 253, 5796, 46620, 213444, ... (A001016)
---------------------------------------------------------------------
-
[1,253] cat [84*(2*n-1)*(2*n^4-4*n^3+8*n^2-6*n+3): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
-
Join[{1, 253}, Table[84 (2 n - 1) (2 n^4 - 4 n^3 + 8 n^2 - 6 n + 3), {n, 2, 30}]]
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
Showing 1-10 of 10 results.
Comments