A171367
Antidiagonal sums of triangle of Stirling numbers of 2nd kind A048993.
Original entry on oeis.org
1, 0, 1, 1, 2, 4, 9, 22, 58, 164, 495, 1587, 5379, 19195, 71872, 281571, 1151338, 4902687, 21696505, 99598840, 473466698, 2327173489, 11810472444, 61808852380, 333170844940, 1847741027555, 10532499571707, 61649191750137, 370208647200165, 2278936037262610, 14369780182166215
Offset: 0
-
b:= proc(n, m) option remember; `if`(n<=m,
`if`(n=m, 1, 0), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2023
-
Table[Sum[StirlingS2[n-k, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 18 2016 *)
-
makelist(sum(stirling2(n-k,k),k,0,n),n,0,60); /* Emanuele Munarini, Jun 01 2012 */
-
a(n) = sum(k=0, n, stirling(n-k, k,2)); /* Joerg Arndt, Jan 16 2013 */
A097341
a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.
Original entry on oeis.org
1, 0, 2, 2, 6, 14, 38, 110, 342, 1134, 3990, 14830, 58006, 237998, 1021462, 4574318, 21325462, 103287598, 518768406, 2697426926, 14498316182, 80440333998, 460112203798, 2710038058862, 16418576767126, 102212840258094, 653247225514262, 4282249051881198
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 2^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
-
a(n) = sum(k=0, n\2, 2^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022
A097342
a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 3^k.
Original entry on oeis.org
1, 0, 3, 3, 12, 30, 93, 300, 1038, 3810, 14781, 60375, 258807, 1160949, 5435652, 26502555, 134282406, 705720549, 3840542031, 21608662710, 125523530724, 751831408929, 4637611255422, 29428408797852, 191907975348210
Offset: 0
-
Table[Sum[StirlingS2[n-k,k]3^k,{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, May 24 2012 *)
-
my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 3^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
-
a(n) = sum(k=0, n\2, 3^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022
A124380
O.g.f.: A(x) = Sum_{n>=0} x^n*Product_{k=0..n} (1 + k*x).
Original entry on oeis.org
1, 1, 2, 4, 9, 22, 57, 157, 453, 1368, 4296, 13995, 47138, 163779, 585741, 2152349, 8113188, 31326760, 123748871, 499539900, 2058542819, 8651755865, 37054078481, 161591063250, 717032333816, 3235298221401, 14834735654080, 69085973044125
Offset: 0
A(x) = 1 + x*(1+x) + x^2*(1+x)*(1+2x) + x^3*(1+x)*(1+2x)*(1+3x) +...
-
nmax = 30; CoefficientList[Series[Sum[x^(2*k)*Pochhammer[1 + 1/x, k], {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2024 *)
Table[Sum[(-1)^k * StirlingS1[n+1-k, n+1-2*k], {k, 0, (n+1)/2}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 18 2024 *)
-
a(n)=polcoeff(sum(k=0,n,x^k*prod(j=0,k,1+j*x+x*O(x^n))),n)
A119429
Expansion of Sum_{k>=0} x^(2*k)/Product_{j=1..k} (1 - j*2*x).
Original entry on oeis.org
1, 0, 1, 2, 5, 14, 45, 164, 661, 2884, 13461, 66894, 353217, 1977146, 11691481, 72734088, 474172777, 3229062120, 22914397417, 169128976922, 1296276808253, 10300677006854, 84731125615749, 720392483485868, 6321631421441149
Offset: 0
-
a(n) = sum(k=0, n\2, 2^(n-2*k)*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 08 2022
A136011
Irregular triangle read by rows, Stirling numbers of the second kind: columns shifted to allow (1, 1, 2, 2, 3, 3, ...) terms per row.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 15, 6, 1, 31, 25, 1, 1, 63, 90, 10, 1, 127, 301, 65, 1, 1, 255, 966, 350, 15, 1, 511, 3025, 1701, 140, 1, 1, 1023, 9330, 7770, 1050, 21, 1, 2047, 28501, 34105, 6951, 266, 1, 1, 4095, 86526, 145750, 42525, 2646, 28
Offset: 1
First few rows of the triangle:
1;
1;
1, 1;
1, 3;
1, 7, 1;
1, 15, 6;
1, 31, 25, 1;
1, 63, 90, 10;
1, 127, 301, 65, 1;
1, 255, 966, 350, 15;
...
T(5,3) = 1 because we have {1,2},{3,4},{5,6}.
T(6,3) = 6 because we have {1,2,7},{3,4},{5,6}; {1,2},{3,4,7},{5,6}; {1,2},{3,4},{5,6,7}; {1,2},{3,4,5},{6,7}; {1,2,3},{4,5},{6,7}; {1,2,5},{3,4},{6,7}. - _Geoffrey Critzer_, Dec 02 2013
-
T:= (n, k)-> Stirling2(n+1-k, k):
seq(seq(T(n, k), k=1..(n+1)/2), n=1..20); # Alois P. Heinz, Dec 04 2013
-
nn=15;Range[0,nn]!;Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[Product[x^2/(1-i x),{i,1,k}],{x,0,nn}],x],{k,1,nn/2}]],2]]//Grid (* Geoffrey Critzer, Dec 02 2013 *)
Original entry on oeis.org
1, 2, 4, 8, 17, 39, 97, 261, 756, 2343, 7722, 26917, 98789, 380360, 1531698, 6434385, 28130890, 127729730, 601196428, 2928369917, 14738842361, 76547694741, 409718539681, 2257459567236, 12789959138943, 74439150889080, 444647798089245, 2723583835351855
Offset: 1
a(5) = 17 = sum of row 5 terms of triangle A137855: (1 + 2 + 5 + 8 + 1).
-
a(n)={sum(k=1, n, sum(j=1, n-k+1, stirling(k,j,2)))} \\ Andrew Howroyd, Aug 09 2018
A176599
Numerators of the first column of a table with top row the nonnegative integers and successive rows defined by a reverted Akiyama-Tanigawa procedure.
Original entry on oeis.org
1, -1, -1, -5, -7, -1631, -96547, -40291823, -16870575007, -7075000252463, -2969301738826267, -13713149169712887583, -10557203537780702505907
Offset: 0
From _Peter Bala_, Aug 14 2012: (Start)
Column 2: Sum_{n >= 2} x^(n-1)/(Product_{k = 2..n} (x-k)) = -(1/2)*x - (1/12)*x^2 - (1/36)*x^3 - (49/4320)*x^4 - ...
Column 3: Sum_{n >= 3} x^(n-2)/(Product_{k = 3..n} (x-k)) = -(1/3)*x - (1/36)*x^2 - (11/2160)*x^3 - (157/129600)*x^4 - .... (End)
-
a[1, k_] := k; a[n_, k_] := a[n, k] = (a[n-1, k] - a[n-1, k+1])/k; a[n_] := Numerator[a[n, 1]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Aug 02 2012 *)
Showing 1-8 of 8 results.
Comments