cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001597 Perfect powers: m^k where m > 0 and k >= 2.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764
Offset: 1

Views

Author

Keywords

Comments

Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a001597 n = a001597_list !! (n-1)
    (a001597_list, a025478_list, a025479_list) =
       unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, ez) m
        | xx < zz = (xx, bx, ex) :
                    f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > zz = (zz, bz, 2) :
                    f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz+2*bz+1) (bz+1, 2) m
        where (xx, (bx, ex)) = findMin m  --  bx ^ ex == xx
    -- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
    
  • Magma
    [1] cat [n : n in [2..1000] | IsPower(n) ];
    
  • Maple
    isA001597 := proc(n)
        local e ;
        e := seq(op(2,p),p=ifactors(n)[2]) ;
        return ( igcd(e) >=2 or n =1 ) ;
    end proc:
    A001597 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001597(a) then
                    return a ;
                end if;
             end do;
        end if;
    end proc:
    seq(A001597(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
    N:= 10000: # to get all entries <= N
    sort({1,seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
  • Mathematica
    min = 0; max = 10^4;  Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
    Join[{1},Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( cMichael Somos, Aug 05 2009 */
    
  • PARI
    is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • PARI
    list(lim)=my(v=List(vector(sqrtint(lim\=1),n,n^2))); for(e=3,logint(lim,2), for(n=2,sqrtnint(lim,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
    
  • Python
    from sympy import perfect_power
    def ok(n): return n==1 or perfect_power(n)
    print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
    
  • Python
    import sympy
    class A001597() :
        def _init_(self) :
            self.a = [1]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                cand = self.at(n-1)+1
                while sympy.perfect_power(cand) == False:
                    cand += 1
                self.a.append(cand)
                return cand
    a001597 = A001597()
    for n in range(1,20):
        print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A001597(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024
  • Sage
    def A001597_list(n) :
        return [k for k in (1..n) if k.is_perfect_power()]
    A001597_list(1764) # Peter Luschny, Feb 03 2012
    

Formula

Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023

Extensions

Minor corrections from N. J. A. Sloane, Jun 27 2010

A052410 Write n = m^k with m, k integers, k >= 1, then a(n) is the smallest possible choice for m.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Keywords

Comments

Value of m in m^p = n, where p is the largest possible power (see A052409).
For n > 1, n is a perfect power iff a(n) <> n. - Reinhard Zumkeller, Oct 13 2002
a(n)^A052409(n) = n. - Reinhard Zumkeller, Apr 06 2014
Every integer root of n is a power of a(n). All entries (except 1) belong to A007916. - Gus Wiseman, Sep 11 2017

Crossrefs

Programs

  • Haskell
    a052410 n = product $ zipWith (^)
                          (a027748_row n) (map (`div` (foldl1 gcd es)) es)
                where es = a124010_row n
    -- Reinhard Zumkeller, Jul 15 2012
    
  • Maple
    a:= n-> (l-> (t-> mul(i[1]^(i[2]/t), i=l))(
             igcd(seq(i[2], i=l))))(ifactors(n)[2]):
    seq(a(n), n=1..74);  # Alois P. Heinz, Jul 22 2024
  • Mathematica
    Table[If[n==1, 1, n^(1/(GCD@@(Last/@FactorInteger[n])))], {n, 100}]
  • PARI
    a(n) = if (ispower(n,,&r), r, n); \\ Michel Marcus, Jul 19 2017
    
  • Python
    def upto(n):
        list = [1] + [0] * (n - 1)
        for i in range(2, n + 1):
            if not list[i - 1]:
                j = i
                while j <= n:
                    list[j - 1] = i
                    j *= i
        return list
    # M. Eren Kesim, Jun 03 2021
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A052410(n): return integer_nthroot(n,gcd(*factorint(n).values()))[0] if n>1 else 1 # Chai Wah Wu, Mar 02 2024

Formula

a(A001597(k)) = A025478(k).
a(n) = A007916(A278028(n,1)). - Gus Wiseman, Sep 11 2017

Extensions

Definition edited (in a complementary form to A052409) by Daniel Forgues, Mar 14 2009
Corrected by Charles R Greathouse IV, Sep 02 2009
Definition edited by N. J. A. Sloane, Sep 03 2010

A025479 Largest exponents of perfect powers (A001597).

Original entry on oeis.org

2, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 4, 2, 2, 3, 7, 2, 2, 2, 3, 2, 5, 8, 2, 2, 3, 2, 2, 2, 2, 9, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 10, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 11, 2, 7, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 12, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 8, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

Greatest common divisor of all prime-exponents in canonical factorization of n-th perfect power. - Reinhard Zumkeller, Oct 13 2002
Asymptotically, 100% of the terms are 2, since the density of cubes and higher powers among the squares and higher powers is 0. - Daniel Forgues, Jul 22 2014

Crossrefs

Programs

  • Haskell
    a025479 n = a025479_list !! (n-1)  -- a025479_list is defined in A001597.
    -- Reinhard Zumkeller, Mar 28 2014, Jul 15 2012
    
  • Maple
    N:= 10^6: # to get terms corresponding to all perfect powers <= N
    V:= Vector(N,storage=sparse);
    V[1]:= 2:
    for p from 2 to ilog2(N) do
      V[[seq(i^p,i=2..floor(N^(1/p)))]]:= p
    od:
    r,c,A := ArrayTools:-SearchArray(V):
    convert(A,list); # Robert Israel, Apr 25 2017
  • Mathematica
    Prepend[DeleteCases[#, 0], 2] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 10^4}] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    print1(2,", "); for(k=2, 3^8, if(j=ispower(k),print1(j,", "))) \\ Hugo Pfoertner, Jan 01 2019

Formula

a(n) = A052409(A001597(n)). - Reinhard Zumkeller, Oct 13 2002
A001597(n) = A025478(n)^a(n). - Reinhard Zumkeller, Mar 28 2014

Extensions

Definition corrected by Daniel Forgues, Mar 07 2009

A076399 Number of prime factors of n-th perfect power (with repetition).

Original entry on oeis.org

0, 2, 3, 2, 4, 2, 3, 5, 4, 2, 6, 4, 4, 2, 3, 7, 6, 2, 4, 6, 4, 5, 8, 2, 6, 3, 2, 6, 4, 4, 9, 2, 8, 4, 4, 6, 6, 2, 6, 2, 6, 10, 4, 4, 4, 8, 3, 2, 4, 4, 8, 2, 9, 6, 2, 6, 6, 11, 4, 7, 3, 2, 10, 4, 6, 4, 6, 6, 2, 8, 4, 5, 8, 4, 4, 6, 2, 8, 2, 4, 6, 12, 4, 6, 2, 6, 4, 6, 3, 2, 10, 2, 4, 6, 6, 9, 4, 6, 2, 10, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Crossrefs

Programs

  • Haskell
    a076399 n = a001222 (a025478 n) * a025479 n
    -- Reinhard Zumkeller, Mar 28 2014
    
  • Mathematica
    PrimeOmega[Select[Range[10^4], # == 1 || GCD @@ FactorInteger[#][[;; , 2]] > 1 &]] (* Amiram Eldar, Feb 18 2023 *)
  • PARI
    is(n) = n==1 || ispower(n);
    apply(bigomega, select(is, [1..5000])) \\ Amiram Eldar, Feb 18 2023
    
  • Python
    from sympy import mobius, integer_nthroot, primeomega
    def A076399(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return int(primeomega(kmax)) # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001222(A001597(n)).
a(n) = A001222(A025478(n))*A025479(n).
Sum_{A001597(k) <= x} a(k) = 2*sqrt(x)*log(log(x)) + 2*(B_2 - log(2))*sqrt(x) + O(sqrt(x)/log(x)), where B_2 = A083342 (Jakimczuk and Lalín, 2022). - Amiram Eldar, Feb 18 2023, corrected Sep 21 2024

A340641 a(n) is the least root of A340640(n).

Original entry on oeis.org

2, 3, 5, 3, 2, 6, 7, 2, 3, 10, 11, 5, 2, 12, 14, 15, 3, 2, 17, 18, 19, 22, 23, 24, 26, 28, 31, 10, 2, 33, 35, 6, 11, 37, 41, 42, 45, 46, 3, 13, 47, 48, 50, 52, 53, 55, 56, 58, 59, 63, 65, 70, 71, 76, 77, 80, 82, 83, 88, 89, 90, 91, 96, 97, 99, 101, 103, 104, 110
Offset: 1

Views

Author

Hugo Pfoertner, Jan 14 2021

Keywords

Examples

			a(1) = 2: A340640(1) = 4 = 2^2;
a(2) = 3: A340640(2) = 9 = 3^2;
a(3) = 5: A350640(3) = 25 = 5^2;
a(4) = 3: A340640(4) = 27 = 3^3.
		

Crossrefs

Programs

  • PARI
    a340641(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(p2+p0>4, print1(round(n1^(1/p1)), ", ")); n2=n1; n1=n; p2=p1; p1=p0))};
    a340641(13000)

Formula

a(n) = A025478(A340640(n)).

A076396 Smallest prime factor of n-th perfect power.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 2, 7, 2, 3, 2, 11, 5, 2, 2, 13, 2, 2, 3, 3, 2, 17, 2, 7, 19, 2, 3, 2, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 2, 3, 2, 5, 2, 11, 37, 2, 3, 2, 41, 2, 2, 43, 2, 3, 2, 2, 3, 13, 47, 2, 7, 2, 3, 2, 2, 53, 2, 5, 5, 2, 3, 2, 3, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 17, 71, 2, 73, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Crossrefs

Programs

  • Haskell
    a076396 = a020639 . a025478 -- Reinhard Zumkeller, Mar 28 2014
  • Mathematica
    s[n_] := If[n == 1, 1, Module[{f = FactorInteger[n]}, If[GCD @@ f[[;;, 2]] > 1, f[[1, 1]], Nothing]]]; Array[s, 10000] (* Amiram Eldar, May 16 2025 *)

Formula

a(n) = A020639(A001597(n)).
a(n) = A020639(A025478(n)).

A259362 a(1) = 1, for n > 1: a(n) is the number of ways to write n as a nontrivial perfect power.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Doug Bell, Jun 24 2015

Keywords

Comments

a(n) = number of integer pairs (i,j) for distinct values of i where i > 0, j > 1 and n = i^j. Since 1 = 1^r for all real values of r, the requirement for a distinct i causes a(1) = 1 instead of a(1) = infinity.
Alternatively, the sequence can be defined as: a(1) = 1, for n > 1: a(n) = number of pairs (i,j) such that i > 0, j > 1 and n = i^j.
A007916 = n, where a(n) = 0.
A001597 = n, where a(n) > 0.
A175082 = n, where n = 1 or a(n) = 0.
A117453 = n, where n = 1 or a(n) > 1.
A175065 = n, where n > 1 and a(n) > 0 and this is the first occurrence in this sequence of a(n).
A072103 = n repeated a(n) times where n > 1.
A075802 = min(1, a(n)).
A175066 = a(n), where n = 1 or a(n) > 1. This sequence is an expansion of A175066.
A253642 = 0 followed by a(n), where n > 1 and a(n) > 0.
A175064 = a(1) followed by a(n) + 1, where n > 1 and a(n) > 0.
Where n > 1, A001597(x) = n (which implies a(n) > 0), i = A025478(x) and j = A253641(n), then a(n) = A000005(j) - 1, which is the number of factors of j greater than 1. The integer pair (i,j) comprises the smallest value i and the largest value j where i > 0, j > 1 and n = i^j. The a(n) pairs of (a,b) where a > 0, b > 1 and n = a^b are formed with b = each of the a(n) factors of j greater than 1. Examples for n = {8,4096}:
a(8) = 1, A001597(3) = 8, A025478(3) = 2, A253641(8) = 3, 8 = 2^3 and A000005(3) - 1 = 1 because there is one factor of 3 greater than 1 [3]. The set of pairs (a,b) is {(2,3)}.
a(4096) = 5, A001597(82) = 4096, A025478(82) = 2, A253641(4096) = 12, 4096 = 2^12 and A000005(12) - 1 = 5 because there are five factors of 12 greater than 1 [2,3,4,6,12]. The set of pairs (a,b) is {(64,2),(16,3),(8,4),(4,6),(2,12)}.
A023055 = the ordered list of x+1 with duplicates removed, where x is the number of consecutive zeros appearing in this sequence between any two nonzero terms.
A070428(x) = number of terms a(n) > 0 where n <= 10^x.
a(n) <= A188585(n).

Examples

			a(6) = 0 because there is no way to write 6 as a nontrivial perfect power.
a(9) = 1 because there is one way to write 9 as a nontrivial perfect power: 3^2.
a(16) = 2 because there are two ways to write 16 as a nontrivial perfect power: 2^4, 4^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:       1, 2, 3, 4, 5, 6, 7, 8, 9, ...
Squares: 1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:   1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
...
Sum:    oo, 0, 0, 1, 0, 0, 0, 1, 1, ...
a(1)=1:  1, 0, 0, 1, 0, 0, 0, 1, 1, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Sum[Boole[IntegerQ[n^(1/k)]], {k, 2, Floor[Log[2, n]]}]]; Array[a, 100] (* Friedjof Tellkamp, Jun 14 2025 *)
    a[n_] := If[n == 1, 1, DivisorSigma[0, Apply[GCD, Transpose[FactorInteger[n]][[2]]]] - 1]; Array[a, 100] (* Michael Shamos, Jul 06 2025 *)
  • PARI
    a(n) = if (n==1, 1, sum(i=2, logint(n, 2), ispower(n, i))); \\ Michel Marcus, Apr 11 2025

Formula

a(1) = 1, for n > 1: a(n) = A000005(A253641(n)) - 1.
If n not in A001597, then a(n) = 0, otherwise a(n) = A175064(x) - 1 where A001597(x) = n.
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = A089723(n) - 1, for n > 1.
a(n) = A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
Sum_{k>=2..n} a(k) = A089361(n), for n > 1.
G.f.: x + Sum_{j>=2, k>=2} x^(j^k).
Dirichlet g.f.: 1 + Sum_{k>=2} zeta(k*s)-1. (End)

A076397 Largest prime factor of n-th perfect power.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 3, 7, 2, 3, 5, 11, 5, 2, 3, 13, 7, 3, 5, 3, 2, 17, 3, 7, 19, 5, 7, 11, 2, 23, 3, 5, 13, 3, 7, 29, 5, 31, 5, 2, 11, 17, 7, 3, 11, 37, 19, 13, 5, 41, 3, 7, 43, 11, 5, 2, 23, 3, 13, 47, 3, 7, 5, 17, 13, 7, 53, 3, 11, 5, 7, 19, 29, 5, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Comments

a(n) = A006530(A001597(n)).

Crossrefs

Programs

  • Haskell
    a076397 = a006530 . a025478 -- Reinhard Zumkeller, Mar 28 2014
  • Mathematica
    perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; Join[ {1},FactorInteger[ #][[-1,1]]&/@ Select[Range[5000],perfPQ]] (* Harvey P. Dale, Sep 12 2021 *)

Formula

a(n) = A006530(A025478(n)).

A076398 Number of distinct prime factors of n-th perfect power.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Crossrefs

Programs

  • Haskell
    a076398 = a001221 . a025478  -- Reinhard Zumkeller, Mar 28 2014
    
  • Mathematica
    ppQ[1] = True; ppQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; PrimeNu /@ Select[Range[10^4], ppQ] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    lista(nn) = for(n=1, nn, if ((n==1) || ispower(n), print1(omega(n), ", "))); \\ Michel Marcus, Jul 15 2017
    
  • Python
    from sympy import mobius, integer_nthroot, primenu
    def A076398(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return int(primenu(kmax)) # Chai Wah Wu, Aug 14 2024

Formula

a(n) = A001221(A001597(n)).
a(n) = A001221(A025478(n)).

A076403 Squarefree kernel of n-th perfect power.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 3, 10, 11, 5, 2, 6, 13, 14, 6, 15, 3, 2, 17, 6, 7, 19, 10, 21, 22, 2, 23, 6, 5, 26, 3, 14, 29, 30, 31, 10, 2, 33, 34, 35, 6, 11, 37, 38, 39, 10, 41, 6, 42, 43, 22, 15, 2, 46, 3, 13, 47, 6, 7, 10, 51, 26, 14, 53, 6, 55, 5, 14, 57, 58, 15, 59, 30, 61, 62
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Comments

a(n) = A007947(A001597(n)).

Crossrefs

Cf. A025478.

Programs

  • Haskell
    a076403 = a007947 . a025478 -- Reinhard Zumkeller, Mar 28 2014
  • Mathematica
    Prepend[Map[Times @@ FactorInteger[#][[All, 1]] &, DeleteCases[#, 0]], 1] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, Power[n, 1/e], 0] &@ FactorInteger[n], {n, 4000}] (* Michael De Vlieger, Apr 25 2017 *)

Formula

a(n) = A007947(A025478(n)).
Showing 1-10 of 17 results. Next