cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026641 Number of nodes of even outdegree (including leaves) in all ordered trees with n edges.

Original entry on oeis.org

1, 1, 4, 13, 46, 166, 610, 2269, 8518, 32206, 122464, 467842, 1794196, 6903352, 26635774, 103020253, 399300166, 1550554582, 6031074184, 23493410758, 91638191236, 357874310212, 1399137067684, 5475504511858, 21447950506396
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,2),(1,1). - Joerg Arndt, Jun 30 2011
From Emeric Deutsch, Jan 25 2004: (Start)
Let B = 1/sqrt(1-4*z) = g.f. for central binomial coeffs (A000984); F = (1-sqrt(1-4*z))/(z*(3-sqrt(1-4*z))) = g.f. for (A000957).
B = 1 + 2*z + 6*z^2 + 20*z^3 + ... gives the number of nodes in all ordered trees with 0,1,2,3,... edges. On p. 288 of the Deutsch-Shapiro paper one finds that z*B*F = z + 2*z^2 + 7*z^3 + 24*z^4 + ... gives the number of nodes of odd outdegree in all ordered trees with 1,2,3,... edges (cf. A014300).
Consequently, B - z*B*F = 2/(3*sqrt(1-4*z)-1+4*z) = 1 + z + 4*z^2 + 13*z^3 + 46*z^4 + ... gives the total number of nodes of even degree in all ordered trees with 0,1,2,3,4,... edges. (End)
Main diagonal of the following array: first column is filled with 1's, first row is filled alternatively with 1's or 0's: m(i,j) = m(i-1,j) + m(i,j-1): 1 0 1 0 1 ... / 1 1 2 2 3 ... / 1 2 4 6 9 ... / 1 3 7 13 22 ... / 1 4 11 24 46 ... - Benoit Cloitre, Aug 05 2002
The Hankel transform of [1,1,4,13,46,166,610,2269,...] is 3^n. - Philippe Deléham, Mar 08 2007
Second binomial transform of A127361. - Philippe Deléham, Mar 14 2007
Starting with offset 1, generated from iterates of M * [1,1,1,...]; where M = a tridiagonal matrix with (0,2,2,2,...) in the main diagonal and (1,1,1,...) in the super and subdiagonals. - Gary W. Adamson, Jan 04 2009
Equals left border of triangle A158815. - Gary W. Adamson, Mar 27 2009
Equals the INVERTi transform of A101850: (1, 2, 7, 26, 100, ...). - Gary W. Adamson, Jan 10 2012
Diagonal of rational function 1/(1 - (x + x*y + y^2)). - Gheorghe Coserea, Aug 06 2018
Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function (-1)^(n+1) for n > 0. Then A(n, n) equals a(n-1) for all n > 0. - John M. Campbell, Jan 20 2019
These numbers have the same parity as the Catalan numbers A000108; that is, a(n) is odd if and only if n = 2^k - 1 for some nonnegative integer k. It appears that if a(n) is odd then a(n) == 1 (mod 4). - Peter Bala, Feb 07 2024
The number a(n)/(n+1) is the coefficient of x^(n+1) in log(1+(1-sqrt(1-4*x))/2), the generating series of the Sabinin operad. - F. Chapoton, Mar 14 2024

Examples

			From _Joerg Arndt_, Jul 01 2011: (Start)
The triangle of number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,2),(1,1) begins
  1;
  1, 1;
  1, 2,  4;
  1, 3,  7, 13;
  1, 4, 11, 24,  46;
  1, 5, 16, 40,  86, 166;
  1, 6, 22, 62, 148, 314,  610;
  1, 7, 29, 91, 239, 553, 1163, 2269;
This sequence is the diagonal. (End)
G.f. = 1 + x + 4*x^2 + 13*x^3 + 46*x^4 + 166*x^5 + 610*x^6 + 2269*x^7 + ...
		

Crossrefs

Cf. A091526 (k=-2), A072547 (k=-1), this sequence (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).

Programs

  • GAP
    List([0..25],n->(-1)^n*Sum([0..n],k->(-1)^k*Binomial(n+k,k))); # Muniru A Asiru, Aug 06 2018
    
  • Magma
    [(-1)^n*(&+[(-1)^k*Binomial(n+k, k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    seq(add((binomial(k+n, n-k)*binomial(n-k, k)),k=0..floor(n/2)),n=0..30);
    # From Richard Choulet, Jan 22 2010: (Start)
    a:= n -> add(binomial(2*n-k, k)*binomial(k, n-k), k=floor(n/2)..n):
    a:= n -> `if`(n<2, 1, (3/(2))*binomial(2*n-1, n-1)-(1/2)*a(n-1)):
    a:= n -> (-1/2)^(n+2)+(2/3)*add(4^(n-k)*(binomial(2*k, k)*(1/(1-2*k))
            *(1-(-1/8)^(n-k+1))), k=0..n):
    a:= n -> (-1/2)^(n+2)+(3/4)*add(((-1/2)^(n-k))*(binomial(2*k, k)), k=0..n):
    seq(a(n), n=0..30); # (End)
    gf := log(1 + (1 - sqrt(1 - 4*x))/2) / x: ser := series(gf, x, 30):
    seq((n + 1)*coeff(ser, x, n), n = 0..24);  # Peter Luschny, Mar 16 2024
  • Mathematica
    f[n_]:= Sum[ Binomial[n+k, k]*Cos[Pi*(n+k)], {k, 0, n}]; Array[f, 25, 0] (* Robert G. Wilson v, Apr 02 2012 *)
    CoefficientList[Series[2/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
    a[ n_]:= SeriesCoefficient[ D[ Log[1+(1-Sqrt[1-4x])/2], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    a(n)=(-1)^n*sum(k=0,n,(-1)^k*binomial(n+k,k))
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [0,2], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
    
  • Sage
    [(-1)^n*sum((-1)^k*binomial(n+k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 12 2019

Formula

G.f. is logarithmic derivative of the generating function for the Catalan numbers A000108. So this sequence might be called the "log-Catalan" numbers. - Murray R. Bremner, Jan 25 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
G.f.: 2/(3*sqrt(1-4*z)-1+4*z). - Emeric Deutsch, Jul 09 2002
a(n) = (-1)^n*Sum_{k=0..n} (-1)^k*C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..floor(n/2)} binomial(2*n-2*j-1, n-1). - Emeric Deutsch, Jan 28 2004
From Paul Barry, Dec 18 2004: (Start)
A Catalan transform of the Jacobsthal numbers A001045(n+1) under the mapping G(x)-> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x)->H(x(1-x)).
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A001045(k+1). (End)
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*binomial(k, n-k). - Paul Barry, Jul 25 2005
a(n) = Sum_{k=0..n-1} A126093(n,k). - Philippe Deléham, Mar 08 2007
a(n) = (-1/2)^(n+2) + (2/3)*Sum_{k=0..n} ( (4^n-k)*binomial(2*k,k)*(1/(1-2*k))*(1-(-1/8)^(n-k+1)) ). - Yalcin Aktar, Jul 06 2007
a(n) = (-1/2)^(n+2) + (3/4)*Sum_{k=0..n} (-1/2)^(n-k)*binomial(2*k,k). - Yalcin Aktar, Jul 06 2007
From Richard Choulet, Jan 22 2010: (Start)
a(n) = (3*binomial(2*n-1,n-1) - d(n-1))/2, where d(n) = Sum_{k=floor(n/2)..n} binomial(2*n-k, k)*binomial(k, n-k).
a(n) = a(n-1) + (3/2)*Sum_{k=2..n} (1/(2*k-1))*binomial(2*k,k)*a(n-k).
a(n) = (2/3)*binomial(2*n,n) + (2/9)*((-2)^n/n!)*Sum_{k>=0} ( Product_{p=0..n-1} (k-2*p) /3^k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(2*n-k,n).
a(n) = ( Sum_{k=0..n} (1/2)^(n-k+1)*binomial(n+k,k) )^2*(-1/2)^(n+2). (End)
From Gary W. Adamson, Nov 22 2011: (Start)
a(n) is the upper left term of M^n, M = an infinite square production matrix as follows:
1, 3, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
Also, a(n+1) is the sum of top row terms of M^n; e.g. top row of M^3 = (13, 21, 9, 3), sum = 46 = a(4), a(3) = 13. (End)
D-finite with recurrence: 2n*a(n) + (4-7n)*a(n-1) + 2*(1-2n)*a(n-2) = 0. - R. J. Mathar, Dec 17 2011 [The recurrence is proved with the Wilf-Zeilberger (WZ) method applied to Sum_{k=0..floor(n/2)} binomial(k+n, n-k)*binomial(n-k, k). - T. Amdeberhan, Jul 23 2012]
a(n) = A035317(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jul 19 2012
a(n) ~ 2^(2*n+1) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
a(n) = binomial(2*n,n)*hypergeom([1, -n], [-2*n], -1). - Peter Luschny, May 22 2014
G.f. is the derivative of the logarithm of the g.f. for A120588. - Michael Somos, May 18 2015
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
From Peter Bala, Feb 25 2019: (Start)
a(n) = Sum_{k = 0..n} binomial(2*n + 1, n + k + 1)*(-2)^k.
a(n-1) = (1/2)*binomial(2*n,n)*( 1 - 2*(n-1)/(n+1) + 4*(n-1)*(n-2)/((n+1)*(n+2)) - 8*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...) = (1/2)*binomial(2*n,n)*hypergeom([1 - n, 1], [n + 1], 2). (End)
a(0)=1, a(1)=1, and a(n) = (2 - 1/n)*a(n-2) + (7/2 - 2/n)*a(n-1) for n > 1. - Reginald Robson, Nov 01 2022