cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A066364 Prime divisors of solutions to 10^n == 1 (mod n).

Original entry on oeis.org

3, 37, 163, 757, 1999, 5477, 8803, 9397, 13627, 15649, 36187, 40879, 62597, 106277, 147853, 161839, 215893, 231643, 281683, 295759, 313471, 333667, 338293, 478243, 490573, 607837, 647357, 743933, 988643, 1014877, 1056241, 1168711, 1353173, 1390757, 1487867, 1519591, 1627523, 1835083, 1912969, 2028119, 2029759, 2064529
Offset: 1

Views

Author

Vladeta Jovovic, Dec 21 2001

Keywords

Examples

			10^27-1 = 3^5*37*757*333667*440334654777631 is a solution to the congruence.
		

Crossrefs

Programs

  • Mathematica
    fQ[p_] := Block[{fi = First@# & /@ FactorInteger[ MultiplicativeOrder[ 10, p]]}, Union[ MemberQ[ lst, #] & /@ fi] == {True}]; k = 4; lst = {3}; While[k < 180000, If[ p = Prime@ k; fQ@ p, AppendTo[ lst, p]; Print@ p]; k++]; lst (* Robert G. Wilson v, Nov 30 2013 *)
  • PARI
    S=Set([3]); forprime(p=7,10^6, v=factorint(znorder(Mod(10,p)))[,1]; if(length(setintersect(S,Set(v)))==length(v), S=setunion(S,[p])) ); print(vecsort(eval(S))) \\ Max Alekseyev, Nov 16 2005

Formula

A prime p is a term iff all prime divisors of ord_p(10) are terms, where ord_p(10) is the order of 10 modulo p. - Max Alekseyev, Nov 16 2005

Extensions

Edited by Max Alekseyev, Nov 16 2005
Edited by Hans Havermann, Jul 11 2014

A106305 Divisors of 10^14 - 1.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 239, 717, 2151, 2629, 4649, 7887, 13947, 23661, 41841, 51139, 153417, 460251, 909091, 1111111, 2727273, 3333333, 8181819, 9999999, 10000001, 12222221, 30000003, 36666663, 90000009, 109999989, 217272749, 651818247
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 12 2005

Keywords

Crossrefs

Programs

Formula

10^14 - 1 = 3^2 * 11 * 239 * 4649 * 909091 = 99999999999999. - Alonso del Arte, Nov 09 2017

A109492 Divisors of 111111.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777, 1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10101, 15873, 37037, 111111
Offset: 1

Views

Author

Philippe Deléham, Aug 28 2005

Keywords

Comments

Note that the smaller repunits R3=111, R4=1111, R5=11111 are semiprimes and have only 4 divisors, which is again the case for the next repunit R7=1111111. - M. F. Hasler, Oct 13 2011

Crossrefs

Cf. A199799 (totatives of 111111), A154549 (111111*n).

Programs

A109933 Divisors of 10^13 - 1.

Original entry on oeis.org

1, 3, 9, 53, 79, 159, 237, 477, 711, 4187, 12561, 37683, 265371653, 796114959, 2388344877, 14064697609, 20964360587, 42194092827, 62893081761, 126582278481, 188679245283, 1111111111111, 3333333333333, 9999999999999
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 11 2005

Keywords

Crossrefs

Programs

A111117 Divisors of 10^15 - 1.

Original entry on oeis.org

1, 3, 9, 27, 31, 37, 41, 93, 111, 123, 271, 279, 333, 369, 813, 837, 999, 1107, 1147, 1271, 1517, 2439, 3441, 3813, 4551, 7317, 8401, 10027, 10323, 11111, 11439, 13653, 25203, 30081, 30969, 33333, 34317, 40959, 47027, 75609, 90243, 99999, 141081
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 15 2005

Keywords

Crossrefs

Programs

A111211 Divisors of 10^16 - 1.

Original entry on oeis.org

1, 3, 9, 11, 17, 33, 51, 73, 99, 101, 137, 153, 187, 219, 303, 411, 561, 657, 803, 909, 1111, 1233, 1241, 1507, 1683, 1717, 2329, 2409, 3333, 3723, 4521, 5151, 6987, 7227, 7373, 9999, 10001, 11169, 13563, 13651, 13837, 15453, 18887, 20961, 22119, 25619
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 25 2005

Keywords

Crossrefs

Programs

A113522 Divisors of 10^18 - 1.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 19, 21, 27, 33, 37, 39, 57, 63, 77, 81, 91, 99, 111, 117, 133, 143, 171, 189, 209, 231, 247, 259, 273, 297, 333, 351, 399, 407, 429, 481, 513, 567, 627, 693, 703, 741, 777, 819, 891, 999, 1001, 1053, 1197, 1221, 1287, 1443, 1463, 1539, 1729
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jan 12 2006

Keywords

Crossrefs

Programs

A070189 a(n) = 12345679*n.

Original entry on oeis.org

0, 12345679, 24691358, 37037037, 49382716, 61728395, 74074074, 86419753, 98765432, 111111111, 123456790, 135802469, 148148148, 160493827, 172839506, 185185185, 197530864, 209876543, 222222222, 234567901, 246913580, 259259259, 271604938, 283950617, 296296296, 308641975
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2002

Keywords

Comments

a(82)=1012345678 is the first term which has a digit appearing more than once without an obvious pattern, although a(-82)=-1012345678 might be seen as the concatenation of ten consecutive numbers.

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 12345679 at p. 188.

Crossrefs

Programs

  • Mathematica
    Table[12345679*n,{n,0,30}] (* or *) LinearRecurrence[{2,-1},{0,12345679},30] (* Harvey P. Dale, Oct 16 2015 *)
  • PARI
    a(n)=12345679*n \\ Charles R Greathouse IV, Jan 09 2012
    
  • PARI
    concat(0, Vec(12345679*x/(1-x)^2 + O(x^26))) \\ Elmo R. Oliveira, Jun 26 2025

Formula

a(n) = n*(10^(10-1)-1)/(10-1)^2.
From Elmo R. Oliveira, Jun 26 2025: (Start)
G.f.: 12345679*x/(1-x)^2.
E.g.f.: 12345679*x*exp(x).
a(n) = 333667*A085959(n).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Elmo R. Oliveira, Jun 26 2025

A113116 Divisors of 10^17 - 1.

Original entry on oeis.org

1, 3, 9, 2071723, 6215169, 18645507, 5363222357, 16089667071, 48269001213, 11111111111111111, 33333333333333333, 99999999999999999
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jan 02 2006

Keywords

Crossrefs

Programs

Showing 1-10 of 14 results. Next