A107663
a(2n) = 2*4^n-1, a(2n+1) = (2^(n+1)+1)^2; interlaces A083420 with A028400.
Original entry on oeis.org
1, 9, 7, 25, 31, 81, 127, 289, 511, 1089, 2047, 4225, 8191, 16641, 32767, 66049, 131071, 263169, 524287, 1050625, 2097151, 4198401, 8388607, 16785409, 33554431, 67125249, 134217727, 268468225, 536870911, 1073807361, 2147483647
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Illustration of initial terms (A028400)
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2,-4).
A152977
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^n into powers of 2 less than or equal to 2^k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 9, 9, 1, 1, 2, 4, 10, 25, 17, 1, 1, 2, 4, 10, 35, 81, 33, 1, 1, 2, 4, 10, 36, 165, 289, 65, 1, 1, 2, 4, 10, 36, 201, 969, 1089, 129, 1, 1, 2, 4, 10, 36, 202, 1625, 6545, 4225, 257, 1, 1, 2, 4, 10, 36, 202, 1827, 17361, 47905, 16641, 513, 1
Offset: 0
A(3,2) = 9, because there are 9 partitions of 2^3=8 into powers of 2 less than or equal to 2^2=4: [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, ...
1, 5, 9, 10, 10, 10, ...
1, 9, 25, 35, 36, 36, ...
1, 17, 81, 165, 201, 202, ...
Columns k=0-10 give:
A000012,
A094373,
A028400(n-2) for n>1,
A210772,
A210773,
A210774,
A210775,
A210776,
A210777,
A210778,
A210779.
-
b:= proc(n,j) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n `if`(n=0, 1, b(2^(n-k), k)):
seq(seq(A(n, d-n), n=0..d), d=0..11);
-
b[n_, j_] := Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j, b[n, j] = b[n-1, j]+b[2*n, j-1], True, nn = 1+Floor[n]; r := n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_, k_] := If[n == 0, 1, b[2^(n-k), k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A092431
Numbers having in binary representation a leading 1 followed by n zeros and n-1 ones.
Original entry on oeis.org
2, 9, 35, 135, 527, 2079, 8255, 32895, 131327, 524799, 2098175, 8390655, 33558527, 134225919, 536887295, 2147516415, 8590000127, 34359869439, 137439215615, 549756338175, 2199024304127, 8796095119359, 35184376283135, 140737496743935, 562949970198527
Offset: 1
-
LinearRecurrence[{7, -14, 8}, {2, 9, 35}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
Table[FromDigits[Join[PadRight[{1},n,0],PadRight[{},n-2,1]],2],{n,2,30}]//Sort (* or *) Rest[CoefficientList[Series[x (-2+5x)/((x-1)(2x-1)(4x-1)),{x,0,30}],x]] (* Harvey P. Dale, Jul 30 2021 *)
A060919
Number of corners in a 4-sided fractal.
Original entry on oeis.org
4, 8, 20, 60, 204, 748, 2860, 11180, 44204, 175788, 701100, 2800300, 11193004, 44755628, 178989740, 715893420, 2863442604, 11453508268, 45813508780, 183252986540, 733009849004, 2932035201708, 11728132418220, 46912512895660, 187650018028204, 750600005003948, 3002399885798060
Offset: 1
A085903
Expansion of (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)).
Original entry on oeis.org
1, 1, 7, 9, 31, 49, 127, 225, 511, 961, 2047, 3969, 8191, 16129, 32767, 65025, 131071, 261121, 524287, 1046529, 2097151, 4190209, 8388607, 16769025, 33554431, 67092481, 134217727, 268402689, 536870911, 1073676289, 2147483647
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (1,4,-2,-4).
-
[Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // Vincenzo Librandi, Apr 28 2014
-
seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # Peter Bala, Apr 27 2014
-
CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* Robert G. Wilson v, May 04 2013 *)
LinearRecurrence[{1,4,-2,-4},{1,1,7,9},40] (* Harvey P. Dale, Jul 25 2016 *)
-
a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ David Wasserman, Feb 10 2005
-
def A085903(n): return (1<>1))-1)**2 # Chai Wah Wu, Jun 19 2024
A264871
Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 9, 1, 32, 81, 125, 81, 17, 1, 64, 243, 625, 729, 289, 33, 1, 128, 729, 3125, 6561, 4913, 1089, 65, 1, 256, 2187, 15625, 59049, 83521, 35937, 4225, 129, 1, 512, 6561, 78125, 531441, 1419857, 1185921, 274625, 16641, 257
Offset: 0
1, 2, 4, 8, 16, 32,
1, 3, 9, 27, 81, 243,
1, 5, 25, 125, 625, 3125,
1, 9, 81, 729, 6561, 59049,
1, 17, 289, 4913, 83521, 1419857,
1, 33, 1089, 35937, 1185921,39135393,
-
Reverse /@ Table[(1 + 2^(n - m))^m, {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)
A213669
Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the double star graph G(n) obtained by joining with an edge the centers of two star trees each having n+1 vertices (n>=1, k>=2).
Original entry on oeis.org
4, 4, 1, 1, 6, 11, 6, 1, 1, 6, 17, 26, 22, 8, 1, 1, 8, 28, 58, 78, 68, 37, 10, 1, 1, 10, 45, 120, 212, 262, 230, 140, 56, 12, 1, 1, 12, 66, 220, 495, 794, 936, 822, 535, 250, 79, 14, 1, 1, 14, 91, 364, 1001, 2002, 3005, 3446, 3045, 2072, 1071, 406, 106, 16, 1
Offset: 1
Row 1 is 4,4,1 because the graph G(1) is the path abcd; there are 4 dominating subsets of size 2 (ac,ad,bc,bd), 4 dominating subsets of size 3 (abc,abd,acd,bcd) and 1 dominating subset of size 4 (abcd).
Triangle starts:
4, 4, 1;
1, 6, 11, 6, 1;
1, 6, 17, 26, 22, 8, 1;
1, 8, 28, 58, 78, 68, 37, 10, 1;
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
- S. Akbari, S. Alikhani, and Y. H. Peng, Characterization of graphs using domination polynomials, European J. Comb., 31, 2010, 1714-1724.
- T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
- Eric Weisstein's World of Mathematics, Book Graph
- Eric Weisstein's World of Mathematics, Connected Dominating Set
-
P := proc (n) options operator, arrow: (x^n+x*(1+x)^n)^2 end proc: for n to 9 do seq(coeff(P(n), x, k), k = 2 .. 2*n+2) end do; # yields sequence in triangular form
-
T[n_, k_] := SeriesCoefficient[(x^n + x (1 + x)^n)^2, {x, 0, k}];
Table[T[n, k], {n, 1, 9}, {k, 2, 2 n + 2}] // Flatten (* Jean-François Alcover, Dec 06 2017 *)
Showing 1-7 of 7 results.
Comments