A033887 a(n) = Fibonacci(3*n + 1).
1, 3, 13, 55, 233, 987, 4181, 17711, 75025, 317811, 1346269, 5702887, 24157817, 102334155, 433494437, 1836311903, 7778742049, 32951280099, 139583862445, 591286729879, 2504730781961, 10610209857723, 44945570212853, 190392490709135, 806515533049393, 3416454622906707
Offset: 0
Examples
a(5) = Fibonacci(3*5 + 1) = Fibonacci(16) = 987. - _Indranil Ghosh_, Feb 04 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1592
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, 7(38) (2012), 1871-1876.
- Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010), #10.8.2, Example 13.
- Gary Detlefs and Wolfdieter Lang, Improved Formula for the Multi-Section of the Linear Three-Term Recurrence Sequence, arXiv:2304.12937 [math.CO], 2023.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013), #13.4.5.
- Edyta Hetmaniok, Bożena Piątek, and Roman Wituła, Binomials Transformation Formulae of Scaled Fibonacci Numbers, Open Mathematics, 15(1) (2017), 477-485.
- Tanya Khovanova, Recursive Sequences.
- Roman Witula, Binomials transformation formulae of scaled Lucas numbers, Demonstratio Mathematica, 46(1) (2013), 15-27.
- Roman Witula and Damian Slota, delta-Fibonacci numbers, Appl. Anal. Discr. Math 3 (2009), 310-329, MR2555042.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Crossrefs
Programs
-
Magma
[Fibonacci(3*n+1): n in [0..100]]; // Vincenzo Librandi, Apr 17 2011
-
Mathematica
Fibonacci[Range[1,5!,3]] (* Vladimir Joseph Stephan Orlovsky, May 18 2010 *)
-
PARI
a(n)=fibonacci(3*n+1) \\ Charles R Greathouse IV, Feb 03 2014
-
PARI
Vec((1-x)/(1-4*x-x^2) + O(x^100)) \\ Altug Alkan, Dec 10 2015
Formula
a(n) = 2*A049651(n) + 1.
a(n) = 4*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=3;
G.f.: (1 - x)/(1 - 4*x - x^2).
a(n) = ((1 + sqrt(5))*(2 + sqrt(5))^n - (1 - sqrt(5))*(2 - sqrt(5))^n)/(2*sqrt(5)).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*F(n-j+1). - Paul Barry, May 19 2006
First differences of A001076. - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
a(n) = A167808(3*n+1). - Reinhard Zumkeller, Nov 12 2009
a(n) = Sum_{k=0..n} C(n,k)*F(n+k+1). - Paul Barry, Apr 19 2010
Let p[1]=3, p[i]=4, (i>1), and A be a Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1] (i <= j), A[i,j]=-1 (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = Sum_{i=0..n} C(n,n-i)*A063727(i). - Seiichi Kirikami, Mar 06 2012
a(n) = F(2*n)*L(n+1) + F(n-1)*(-1)^n for n > 0. - J. M. Bergot, Feb 09 2016
a(n) = Sum_{k=0..n} binomial(n,k)*5^floor(k/2)*2^(n-k). - Tony Foster III, Sep 03 2017
2*a(n) = Fibonacci(3*n) + Lucas(3*n). - Bruno Berselli, Oct 13 2017
a(n)^2 is the denominator of continued fraction [4,...,4, 2, 4,...,4], which has n 4's before, and n 4's after, the middle 2. - Greg Dresden and Hexuan Wang, Aug 30 2021
a(n) = i^n*(S(n, -4*i) + i*S(n-1, -4*i)), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. From the simplified trisection formula. See the first entry above with A001076. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
E.g.f.: exp(2*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, May 24 2024
Comments