A037074 Numbers that are the product of a pair of twin primes.
15, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1
Examples
a(2)=35 because 5*7=35, that is (5,7) is the 2nd pair of twin primes.
References
- Albert A. Mullin, "Bicomposites, twin primes and arithmetic progression", Abstract 04T-11-48, Abstracts of AMS, Vol. 25, No. 4, 2004, p. 795.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a037074 = subtract 1 . a075369 -- Reinhard Zumkeller, Feb 10 2015 -- Reinhard Zumkeller, Feb 10 2015, Aug 14 2011
-
Magma
[p*(p+2): p in PrimesUpTo(1000) | IsPrime(p+2)]; // Bruno Berselli, Jul 08 2011
-
Magma
IsSemiprime:=func
; [s: n in [1..500] | IsSemiprime(s) where s is 4*n^2-1]; // Vincenzo Librandi, Apr 13 2013 -
Maple
ZL:=[]: for p from 1 to 863 do if (isprime(p) and isprime(p+2) ) then ZL:=[op(ZL),(p*(p+2))]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007 for i from 1 to 150 do if ithprime(i+1) = ithprime(i) + 2 then print({ithprime(i)*ithprime(i+1)}); fi; od; # Zerinvary Lajos, Mar 19 2007
-
Mathematica
s = Select[ Prime@ Range@170, PrimeQ[ # + 2] &]; s(s + 2) (* Robert G. Wilson v, Feb 21 2006 *) (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {2}]; Select[ Range[750000], fQ] (* Robert G. Wilson v, Feb 08 2012 *) Times@@@Select[Partition[Prime[Range[500]],2,1],Last[#]-First[#]==2&] (* Harvey P. Dale, Oct 16 2012 *)
-
PARI
g(n) = for(x=1,n,if(prime(x+1)-prime(x)==2,print1(prime(x)*prime(x+1)","))) \\ Cino Hilliard, Jul 28 2006
Formula
a(n) = A001359(n)*A006512(n). A000010(a(n))*A000203(a(n)) = (a(n)-3)*(a(n)+1). - Jonathan Vos Post, Feb 21 2006
a(n) = A075369(n) - 1. - Reinhard Zumkeller, Feb 10 2015
Sum_{n>=1} 1/a(n) = A209328. - Amiram Eldar, Nov 20 2020
A000010(a(n)) == 0 (mod 8). - DarĂo Clavijo, Oct 26 2022
Extensions
More terms from Erich Friedman
Comments