cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A134914 a(n) = ceiling(n^(1/3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 17 2007

Keywords

Crossrefs

Programs

A079416 a(n) = round(prime(n)/n).

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

The sequence is not monotone, see example and A079417.

Examples

			a(20) = round(prime(20)/20) = round(71/20) = round(3.55) = 4;
a(21) = round(prime(21)/21) = round(73/21) = round(3.476190...) = 3;
a(22) = round(prime(22)/22) = round(79/22) = round(3.590909...) = 4.
		

Crossrefs

Programs

  • Magma
    [Round(NthPrime(n)/n): n in [1..100]]; // G. C. Greubel, Jan 18 2019
    
  • Mathematica
    f[n_] := Round[ Prime[n]/n]; Array[f, 105] (* Robert G. Wilson v, Oct 23 2015 *)
  • PARI
    vector(100, n, round(prime(n)/n)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    [round(nth_prime(n)/n) for n in (1..100)] # G. C. Greubel, Jan 18 2019

A090973 a(n) = ceiling(prime(n)/n).

Original entry on oeis.org

2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Amarnath Murthy, Jan 04 2004

Keywords

Examples

			a(12) = 4 as pi(48) = 15 > 12 > pi(36) = 11.
		

Crossrefs

Cf. A068901. - Reinhard Zumkeller, Aug 16 2009

Programs

  • Magma
    [Ceiling(NthPrime(n)/n): n in [1..120]]; // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Table[Ceiling[Prime[n]/n], {n, 1, 120}] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    vector(120, n, ceil(prime(n)/n)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    [ceil(nth_prime(n)/n) for n in (1..120)] # G. C. Greubel, Feb 02 2019

Formula

For n > 1, a(n) = A038605(n)+1. - David Wasserman, Feb 23 2006
a(A038606(n)) = n+1. - Reinhard Zumkeller, Aug 16 2009

Extensions

More terms from David Wasserman, Feb 23 2006

A134917 a(n) = ceiling(n^(4/3)).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 14, 16, 19, 22, 25, 28, 31, 34, 37, 41, 44, 48, 51, 55, 58, 62, 66, 70, 74, 78, 81, 86, 90, 94, 98, 102, 106, 111, 115, 119, 124, 128, 133, 137, 142, 146, 151, 156, 161, 165, 170, 175, 180, 185, 190, 195, 200
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 17 2007

Keywords

Crossrefs

Programs

A134918 Ceiling(n^(5/3)).

Original entry on oeis.org

1, 4, 7, 11, 15, 20, 26, 32, 39, 47, 55, 63, 72, 82, 92, 102, 113, 124, 136, 148, 160, 173, 187, 200, 214, 229, 243, 259, 274, 290, 306, 323, 340, 357, 375, 393, 411, 430, 449, 468, 488, 508, 528, 549, 570, 591, 613, 634, 657
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 17 2007

Keywords

Crossrefs

Programs

A245071 a(n) = 12n - prime(n).

Original entry on oeis.org

10, 21, 31, 41, 49, 59, 67, 77, 85, 91, 101, 107, 115, 125, 133, 139, 145, 155, 161, 169, 179, 185, 193, 199, 203, 211, 221, 229, 239, 247, 245, 253, 259, 269, 271, 281, 287, 293, 301, 307, 313, 323, 325, 335, 343, 353, 353, 353, 361, 371, 379, 385, 395, 397, 403, 409, 415, 425
Offset: 1

Views

Author

Freimut Marschner, Jul 21 2014

Keywords

Comments

Prime(n) > n for n > 0. Let prime(n) = k*n with k as an even integer constant, for example, k = 12; then a(n) = k*n - prime(n) is a sequence of odd integers that are positive as long as k*n > prime(n). This is the case up to a(40072) = 11. If k*n < prime(n) then a(n) < 0, a(40073) = -5 up to a(40083) = -5. From a(40084) = 5 up to a(40121) = 5, a(n) > 0 again, but a(n) < 0 for n >= 40122. For k = 12 the table shows this result compared with floor(prime(n)/n) and (prime(n) mod n) <= (prime(n+1) mod (n+1)) for n >= 1. Observations:
(1) If k > floor(prime(n)/n) then a(n) is positive.
(2) If k <= floor(prime(n)/n) and (prime(n) mod n) < (prime(n+1) mod (n+1)) and n > 1 then a(n) is negative.
(3) If k <= floor(prime(n)/n) and (prime(n) mod n) > (prime(n+1) mod (n+1)) then a(n) is positive.
.
n prime(n) floor(prime(n)/n) (prime(n) mod n) a(n)
40072 480853 12 5 11
40073 480881 12 23 -5
40083 481001 11 40079 -5
40084 481003 11 40074 5
40121 481447 12 5 5
40122 481469 12 13 -5

Examples

			a(3) = 12*3 - prime(3) = 36 - 5 = 31.
		

Crossrefs

A000040 (prime(n)), A038605 (floor(prime(n)/n)), A004648 (prime(n) mod n), A038606 (Least k such that k-th prime > n * k), A038607 (the smallest prime number k such that k > n*pi(k)), A102281 (the largest number m such that m = pi(n*m)).

Programs

  • Mathematica
    Table[12n - Prime[n], {n, 60}] (* Alonso del Arte, Jul 27 2014 *)
  • PARI
    vector(133, n, 12*n-prime(n) )

Formula

a(n) = 12*n - prime(n).

A024926 a(n) = Sum_{k=1..n} floor(p(k)/k).

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216
Offset: 1

Views

Author

Keywords

Crossrefs

Partial sums of A038605.

Programs

  • Mathematica
    Table[Floor[Prime[n]/n],{n,70}]//Accumulate (* Harvey P. Dale, Nov 07 2019 *)

A065521 a(n) = floor(prime(n) / n) * n - prime(n) mod n.

Original entry on oeis.org

2, 1, 1, 1, 9, 11, 11, 13, 13, 11, 13, 35, 37, 41, 43, 43, 43, 47, 47, 49, 53, 53, 55, 55, 53, 55, 59, 61, 65, 67, 121, 125, 127, 133, 131, 137, 139, 141, 145, 147, 149, 155, 153, 159, 163, 169, 165, 161, 165, 171, 175, 177, 183, 181, 183, 185, 187, 193, 195, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 27 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[Prime[n]/n]n-Mod[Prime[n],n],{n,60}] (* Harvey P. Dale, Dec 27 2019 *)
  • PARI
    { for (n=1, 1000, a=floor(prime(n) / n) * n - prime(n) % n; write("b065521.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 20 2009
    
  • PARI
    a(n) = n*(prime(n)\n) - (prime(n) % n); \\ Michel Marcus, Jun 18 2018

Formula

a(n) = A038605(n) * n - A004648(n).

A067289 Numbers k such that the number of divisors of k is floor(prime(k)/k).

Original entry on oeis.org

5, 7, 11, 25, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 81, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 729, 1065, 1066, 1070, 1074, 1085, 1086, 1090
Offset: 1

Views

Author

Benoit Cloitre, Feb 24 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], DivisorSigma[0, #] == Floor[Prime[#]/#] &] (* Amiram Eldar, Apr 23 2022 *)

Formula

Numbers k such that A000005(k) = floor(prime(k)/k).

A076080 a(n) = A076079(n)/n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Amarnath Murthy, Oct 05 2002

Keywords

Crossrefs

Cf. A076079.
Except for first term, same as A038605.

Programs

  • Maple
    1,seq(floor(evalf(ithprime(n)/n,100)),n=2..200);

Formula

a(n) = floor((prime(n)-1)/n). - David Wasserman, Feb 23 2006

Extensions

More terms from Sascha Kurz, Jan 30 2003
More terms from David Wasserman, Feb 23 2006
Showing 1-10 of 15 results. Next