cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A063414 Number of digits in prime(n)! (A039716).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 15, 18, 23, 31, 34, 44, 50, 53, 60, 70, 81, 84, 95, 102, 106, 117, 125, 137, 152, 160, 164, 173, 177, 185, 214, 222, 235, 239, 261, 265, 279, 292, 301, 314, 328, 332, 355, 359, 369, 373, 401, 429, 438, 443, 452, 467, 471, 495, 510, 524, 539
Offset: 1

Views

Author

Jason Earls, Oct 06 2001

Keywords

Crossrefs

Cf. A039716.

Programs

  • Maple
    [seq(floor(log10(factorial(ithprime(i))))+1, i = 1 .. 100)]; # César Eliud Lozada, Nov 23 2014
  • PARI
    a(n)=#digits(prime(n)!); \\ Joerg Arndt, Nov 23 2014

A134557 Triangle multiplicatively decoded from A039716, the factorials of the prime numbers, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1, 19, 9, 4, 3, 2, 1, 1, 1, 1, 25, 13, 6, 4, 2, 2, 1, 1, 1, 1, 26, 14, 7, 4, 2, 2, 1, 1, 1, 1, 1, 34, 17, 8, 5, 3, 2, 2, 1, 1, 1, 1, 1, 38, 18, 9, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 39, 19, 9, 6, 3, 3, 2
Offset: 1

Views

Author

Alonso del Arte, Jan 22 2008

Keywords

Examples

			Triangle begins:
{1}
{1, 1}
{3, 1, 1}
{4, 2, 1, 1}
{8, 4, 2, 1, 1}
{10, 5, 2, 1, 1, 1}
{15, 6, 3, 2, 1, 1, 1}
{16, 8, 3, 2, 1, 1, 1, 1}
Row 5 of the triangle is 8, 4, 2, 1, 1 because A039716(5) = 39916800 and 39916800 = 2^8 * 3^4 * 5^2 * 7^1 * 11^1.
		

References

  • N. J. A. Sloane, The Encyclopedia of Integer Sequences. New York: Academic Press (1995): Fig. M1722, "Multiplicative encoding of a triangular array"

Crossrefs

Cf. A039716.

Programs

  • Mathematica
    ColumnForm[Table[Take[Flatten[FactorInteger[Prime[n]! ]], {2, 2n, 2}], {n, 15}], Center]

A139159 a(n) = prime(n)! + 1.

Original entry on oeis.org

3, 7, 121, 5041, 39916801, 6227020801, 355687428096001, 121645100408832001, 25852016738884976640001, 8841761993739701954543616000001, 8222838654177922817725562880000001, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A039716(n) + 1. - Michel Marcus, Nov 08 2013

Extensions

More terms from Michel Marcus, Aug 10 2025

A139189 a(n) = prime(n)!-1.

Original entry on oeis.org

1, 5, 119, 5039, 39916799, 6227020799, 355687428095999, 121645100408831999, 25852016738884976639999, 8841761993739701954543615999999, 8222838654177922817725562879999999, 13763753091226345046315979581580902399999999, 33452526613163807108170062053440751665151999999999, 60415263063373835637355132068513997507264511999999999, 258623241511168180642964355153611979969197632389119999999999, 4274883284060025564298013753389399649690343788366813724671999999999999, 138683118545689835737939019720389406345902876772687432540821294940159999999999999
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Numbers of the form (prime(n)!-m)/m :
for m=1 see A139189
for m=2 see A139190
for m=3 see A139191
for m=4 see A139192
for m=5 see A139193
for m=6 see A139194
for m=7 see A139195
for m=8 see A139196
for m=9 see A139197
for m=10 see A139198

Crossrefs

Programs

Formula

a(n)=A039716(n)-1. - R. J. Mathar, May 25 2008

Extensions

More terms from R. J. Mathar, May 25 2008

A139193 Natural numbers of the form (prime(n)! - 5)/5.

Original entry on oeis.org

23, 1007, 7983359, 1245404159, 71137485619199, 24329020081766399, 5170403347776995327999, 1768352398747940390908723199999, 1644567730835584563545112575999999
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Maple
    A039716 := proc(n) factorial(ithprime(n)) ; end: A139193 := proc(n) A039716(n)/5-1 ; end: seq(A139193(n),n=3..14) ; # R. J. Mathar, Sep 18 2009
  • Mathematica
    Table[(Prime[n]! - 5)/5, {n, 3, 20}]

A139196 a(n) = (prime(n)!-8)/8.

Original entry on oeis.org

14, 629, 4989599, 778377599, 44460928511999, 15205637551103999, 3231502092360622079999, 1105220249217462744317951999999, 1027854831772240352215695359999999, 1720469136403293130789497447697612799999999
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! - 8)/8, {n, 3, 20}]

Formula

a(n) = (A039716(n) - 8)/8. - Elmo R. Oliveira, Jan 20 2023

Extensions

Edited by Max Alekseyev, Sep 15 2009

A139198 a(n) = prime(n)!/10 - 1.

Original entry on oeis.org

11, 503, 3991679, 622702079, 35568742809599, 12164510040883199, 2585201673888497663999, 884176199373970195454361599999, 822283865417792281772556287999999
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! - 10)/10, {n, 3, 20}]
  • PARI
    a(n) = prime(n)!/10 - 1 \\ David A. Corneth, Jun 02 2017

Formula

a(n) = A039716(n)/10 - 1. - Elmo R. Oliveira, Jan 20 2023

A103855 a(n) = prime(n)! - prime(n)# + 1.

Original entry on oeis.org

1, 1, 91, 4831, 39914491, 6226990771, 355687427585491, 121645100399132311, 25852016738884753547131, 8841761993739701954537146306771, 8222838654177922817725362319509871, 13763753091226345046315979581573481661865191, 33452526613163807108170062053440751360901736472791
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, n}]; A103855[n_] := Prime[n]! - primorial[n] + 1; Array[A103855, 20] (* G. C. Greubel, May 09 2017 *)
    With[{nn=15},#[[1]]-#[[2]]+1&/@Thread[{Prime[Range[nn]]!,FoldList[Times,Prime[Range[nn]]]}]] (* Harvey P. Dale, Aug 11 2025 *)

Formula

a(n) = A039716(n) - A002110(n) + 1 = A002110(n) * (A092435(n) - 1) + 1.

A103890 a(n) = prime(n)! / prime(n)# + 1.

Original entry on oeis.org

2, 2, 5, 25, 17281, 207361, 696729601, 12541132801, 115880067072001, 1366643159020339200001, 40999294770610176000001, 1854768736099424576471040000001, 109950690675973888893203251200000001, 4617929008390903333514536550400000001
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    #[[1]]/#[[2]]&/@With[{nn=15},Thread[{Prime[Range[nn]]!,FoldList[ Times,Prime[ Range[nn]]]}]]+1 (* Harvey P. Dale, May 21 2019 *)
  • PARI
    a(n) = prime(n)!/vecprod(primes(n)) + 1; \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A039716(n)/A002110(n) + 1 = A092435(n) + 1.

A092435 Prime factorials divided by their corresponding primorials.

Original entry on oeis.org

1, 1, 4, 24, 17280, 207360, 696729600, 12541132800, 115880067072000, 1366643159020339200000, 40999294770610176000000, 1854768736099424576471040000000, 109950690675973888893203251200000000, 4617929008390903333514536550400000000, 420600974084243475616503989010432000000000
Offset: 1

Views

Author

Don Willard (dwillard(AT)prairie.cc.il.us), Mar 23 2004

Keywords

Examples

			E.g., 2 factorial divided by 2 primorial is 1; 3 factorial is 6, divided by 3 primorial (3*2=6) is also 1; 5 factorial is 120, divided by 5 primorial (5*3*2=30) is 4 and so forth.
		

Crossrefs

Subsequence of A036691. - Chayim Lowen, Jul 23 2015

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1)*mul(i, i=ithprime(n-1)+1..ithprime(n)-1))
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Jan 15 2025
  • Mathematica
    Table[ Prime[n]! / Times @@ Prime[ Range[ n]], {n, 13}] (* Robert G. Wilson v, Mar 25 2004 *)
  • PARI
    a(n)=prime(n)!/prod(i=1,n,prime(i)) \\ Ralf Stephan, Dec 21 2013

Formula

p!/p# = A039716/A002110.
Partial products of A061214. - Lekraj Beedassy, Nov 06 2006
From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = A036691(A065890(n)).
a(n) = Product_{k=1..n} prime(k)^(A085604(prime(n),k)-1).
a(n) = A049614(prime(n)).
a(n) = Product_{k=1..prime(n)} k^A066247(k). (End)

Extensions

Edited by Robert G. Wilson v, Mar 25 2004
More terms from Michel Marcus, Jan 15 2025
Showing 1-10 of 40 results. Next