cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042968 Numbers not divisible by 4.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Equivalently, numbers whose square part is odd. Cf. A028982. - Peter Munn, Jul 14 2020
More generally the sequence of numbers not divisible by some fixed integer m >= 2 is given by a(n,m) = 1 + n + floor(n/(m-1)). - Benoit Cloitre, Jul 11 2009
Also a(n,m) = floor((m*n-1)/(m-1)) [with offset 1]. - Gary Detlefs, May 14 2011
Numbers not having more even than odd divisors: A048272(a(n)) >= 0. - Reinhard Zumkeller, Jan 21 2012
Extending the comments of Benoit Cloitre (Jul 11 2009) and Gary Detlefs (May 14 2011), the g.f. is A(m,x) = (1-x^m) / ((1-x^(m-1))*(1-x)^2) where m >= 2 is fixed. - Werner Schulte, Apr 26 2018

Examples

			G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 6*x^4 + 7*x^5 + 9*x^6 + 10*x^7 + 11*x^8 + ... - _Michael Somos_, Jun 17 2018
		

Crossrefs

Cf. A071619 (partial sums); A008586 (complement).
Numbers that are congruent to {k0,k1,k2} mod 4: A004772, A004773, A042965, a(n).

Programs

  • Haskell
    a042968 = (`div` 3) . (subtract 1) . (* 4)
    a042968_list = filter ((/= 0) . (`mod` 4)) [1..]
    -- Reinhard Zumkeller, Sep 02 2012
    
  • Magma
    [n+1+Floor(n/3): n in [0..80]]; // Vincenzo Librandi, Aug 03 2015
    
  • Maple
    seq(n+floor((n-1)/3), n=1..80); # Muniru A Asiru, Feb 17 2019
  • Mathematica
    Select[Table[n,{n,200}], Mod[#,4] != 0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *)
    LinearRecurrence[{1,0,1,-1},{1,2,3,5},80]  (* or *) Drop[Range[110],{4,-1,4}] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    {a(n) = 1 + n + n\3};
    
  • Python
    def A042968(n): return n+(n-1)//3 # Chai Wah Wu, Apr 13 2025
  • Sage
    [1+n+floor(n/3) for n in (0..80)] # G. C. Greubel, Feb 17 2019
    

Formula

a(n) = a(n-1) + a(n-3) - a(n-4).
a(n) = a(n-3) + 4, with a(1) = 1.
G.f.: x * (1+x) * (1+x^2) / ( (1+x+x^2)*(1-x)^2 ). - Michael Somos, Jan 12 2000
A064680(A064680(a(n))) = a(n). - Reinhard Zumkeller, Oct 19 2001
Nearest integer to (Sum_{k>n} 1/k^4)/(Sum_{k>n} 1/k^5). - Benoit Cloitre, Jun 12 2003
a(n) = n + 1 + floor(n/3). - Benoit Cloitre, Jul 11 2009
a(n) = floor((4*n+3)/3). - Gary Detlefs, May 14 2011
A214546(a(n)) >= 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
a(n) = 2*n - ceiling(2*n/3) + 1. - Arkadiusz Wesolowski, Sep 21 2012
Sum_{k=0..n} a(n) = A071619(n+1). - L. Edson Jeffery, Jul 30 2014
The g.f. A(x) satisfies x*A(x)^2 = (B(x)/x)^2 + (B(x)/x), where B(x) is the o.g.f. of A042965. - Peter Bala, Apr 12 2017
a(n) = (12*n + 6 + 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017
Euler transform of length 4 sequence [2, 0, 1, -1]. - Michael Somos, Jun 17 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jun 17 2018
E.g.f.: (2/3)*exp(x)*(1 + 2*x) + (1/9)*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)). - Stefano Spezia, Nov 16 2019
a(n) = (12*n + 6 + w^(2*n)*(w + 2) - w^n*(w - 1))/9 where w = (-1 + sqrt(-3))/2. - Guenther Schrack, Jun 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 05 2021

Extensions

Edited by Peter Munn, Nov 16 2019
I restored my original (1999) definition and offset, which in the intervening 21 years had been lost. - N. J. A. Sloane, Jun 12 2021