A042968 Numbers not divisible by 4.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 1
Examples
G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 6*x^4 + 7*x^5 + 9*x^6 + 10*x^7 + 11*x^8 + ... - _Michael Somos_, Jun 17 2018
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Haskell
a042968 = (`div` 3) . (subtract 1) . (* 4) a042968_list = filter ((/= 0) . (`mod` 4)) [1..] -- Reinhard Zumkeller, Sep 02 2012
-
Magma
[n+1+Floor(n/3): n in [0..80]]; // Vincenzo Librandi, Aug 03 2015
-
Maple
seq(n+floor((n-1)/3), n=1..80); # Muniru A Asiru, Feb 17 2019
-
Mathematica
Select[Table[n,{n,200}], Mod[#,4] != 0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011 *) LinearRecurrence[{1,0,1,-1},{1,2,3,5},80] (* or *) Drop[Range[110],{4,-1,4}] (* Harvey P. Dale, Jan 07 2023 *)
-
PARI
{a(n) = 1 + n + n\3};
-
Python
def A042968(n): return n+(n-1)//3 # Chai Wah Wu, Apr 13 2025
-
Sage
[1+n+floor(n/3) for n in (0..80)] # G. C. Greubel, Feb 17 2019
Formula
a(n) = a(n-1) + a(n-3) - a(n-4).
a(n) = a(n-3) + 4, with a(1) = 1.
G.f.: x * (1+x) * (1+x^2) / ( (1+x+x^2)*(1-x)^2 ). - Michael Somos, Jan 12 2000
Nearest integer to (Sum_{k>n} 1/k^4)/(Sum_{k>n} 1/k^5). - Benoit Cloitre, Jun 12 2003
a(n) = n + 1 + floor(n/3). - Benoit Cloitre, Jul 11 2009
a(n) = floor((4*n+3)/3). - Gary Detlefs, May 14 2011
A214546(a(n)) >= 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
a(n) = 2*n - ceiling(2*n/3) + 1. - Arkadiusz Wesolowski, Sep 21 2012
Sum_{k=0..n} a(n) = A071619(n+1). - L. Edson Jeffery, Jul 30 2014
The g.f. A(x) satisfies x*A(x)^2 = (B(x)/x)^2 + (B(x)/x), where B(x) is the o.g.f. of A042965. - Peter Bala, Apr 12 2017
a(n) = (12*n + 6 + 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017
Euler transform of length 4 sequence [2, 0, 1, -1]. - Michael Somos, Jun 17 2018
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jun 17 2018
E.g.f.: (2/3)*exp(x)*(1 + 2*x) + (1/9)*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)). - Stefano Spezia, Nov 16 2019
a(n) = (12*n + 6 + w^(2*n)*(w + 2) - w^n*(w - 1))/9 where w = (-1 + sqrt(-3))/2. - Guenther Schrack, Jun 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 05 2021
Extensions
Edited by Peter Munn, Nov 16 2019
I restored my original (1999) definition and offset, which in the intervening 21 years had been lost. - N. J. A. Sloane, Jun 12 2021
Comments