A007691
Multiply-perfect numbers: n divides sigma(n).
Original entry on oeis.org
1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1
120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.
- T. D. Noe, Table of n, a(n) for n=1..1600 (using Flammenkamp's data)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Anonymous, Multiply Perfect Numbers [broken link]
- Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors perfect numbers and factoring, SIAM J. Comput. 15:4 (1986), pp. 1143-1154.
- Robert D. Carmichael, A table of multiply perfect numbers, Bull. Amer. Math. Soc. 13 (1907), 383-386.
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373.
- Walter Nissen, Abundancy : Some Resources
- Kaitlin Rafferty and Judy Holdener, On the form of perfect and multiperfect numbers, Pi Mu Epsilon Journal, Vol. 13, No. 5 (Fall 2011), pp. 291-298.
- Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017. See p. 11.
- Eric Weisstein's World of Mathematics, Abundancy
- Eric Weisstein's World of Mathematics, Hyperperfect Number.
- Index entries for sequences where any odd perfect numbers must occur
Other subsequences:
A046985,
A046986,
A046987,
A047728,
A065997,
A066289, (
A076231,
A076233,
A076234),
A088844,
A088845,
A088846,
A091443,
A114887,
A166069,
A245782,
A260508,
A306667, (
A325021 U
A325022), (
A325023 U
A325024), (
A325025 U
A325026),
A325637,
A323653,
A330532, (
A330533 U
A331724),
A336702,
A341045.
Subsequence of the following sequences:
A011775,
A071707,
A083865,
A089748 (after the initial 1),
A102783,
A166070,
A175200,
A225110,
A226476,
A237719,
A245774,
A246454,
A259307,
A263928,
A282775,
A323652,
A336745,
A340864. Also conjectured to be a subsequence of
A005153, of
A307740, and after 1 also of
A295078.
Various number-theoretical functions applied to these numbers:
A088843 [tau],
A098203 [phi],
A098204 [gcd(a(n),phi(a(n)))],
A134665 [2-adic valuation],
A307741 [sigma],
A308423 [product of divisors],
A320024 [the odd part],
A134740 [omega],
A342658 [bigomega],
A342659 [smallest prime not dividing],
A342660 [largest prime divisor].
Positions of ones in
A017666,
A019294,
A094701,
A227470, of zeros in
A054024,
A082901,
A173438,
A272008,
A318996,
A326194,
A341524. Fixed points of
A009194.
Cf.
A007358,
A189000,
A327158,
A332318/
A332319 (for analogs) and
A046762,
A046763,
A046764,
A055715,
A056006,
A081756,
A214842,
A227302,
A227306,
A245775,
A300906,
A325639 (other variants).
Cf. (other related sequences)
A007539,
A066135,
A066961,
A093034,
A094467,
A134639,
A145551,
A019278,
A194771 [= 2*a(n)],
A219545,
A229110,
A262432,
A335830,
A336849,
A341608.
-
a007691 n = a007691_list !! (n-1)
a007691_list = filter ((== 1) . a017666) [1..]
-- Reinhard Zumkeller, Apr 06 2012
-
Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
(* Third program: *)
Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
-
for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
-
from sympy import divisor_sigma as sigma
def ok(n): return sigma(n, 1)%n == 0
print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
Incorrect comment removed and the crossrefs-section reorganized by
Antti Karttunen, Mar 20 2021
A007340
Numbers whose divisors' harmonic and arithmetic means are both integers.
Original entry on oeis.org
1, 6, 140, 270, 672, 1638, 2970, 6200, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 1089270, 1421280, 1539720, 2229500, 2290260, 2457000
Offset: 1
x = 270: Sigma(0, 270) = 16, Sigma(1, 270) = 720; average divisor a = 720/16 = 45 and integer 45 divides x, x/a = 270/45 = 6, but 270 is not in A007691.
- G. L. Cohen, personal communication.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
- N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Wells, Curious and interesting numbers, Penguin Books, p. 124.
- Donovan Johnson, Table of n, a(n) for n = 1..847
- G. L. Cohen, Email to N. J. A. Sloane, Apr. 1994
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput. 73 (2004), 475-491.
- Hisanori Mishima, Factorizations of many number sequences
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, 55 (1948), 615-619.
-
a007340 n = a007340_list !! (n-1)
a007340_list = filter ((== 0) . a054025) a001599_list
-- Reinhard Zumkeller, Dec 31 2013
-
filter:= proc(n)
uses numtheory;
local a;
a:= sigma(n)/sigma[0](n);
type(a,integer) and type(n/a,integer);
end proc:
select(filter, [$1..2500000]); # Robert Israel, Oct 26 2014
-
Do[ a = DivisorSigma[0, n]/ DivisorSigma[1, n]; If[IntegerQ[n*a] && IntegerQ[1/a], Print[n]], {n, 1, 2500000}] (* Labos Elemer *)
ahmQ[n_] := Module[{dn = Divisors[n]}, IntegerQ[Mean[dn]] && IntegerQ[HarmonicMean[dn]]]; Select[Range[2500000], ahmQ] (* Harvey P. Dale, Nov 16 2011 *)
-
is(n)=my(d=divisors(n),s=vecsum(d)); s%#d==0 && #d*n%s==0 \\ Charles R Greathouse IV, Feb 07 2017
A046985
Multiply perfect numbers whose average divisor is an integer and divides the number itself.
Original entry on oeis.org
1, 6, 672, 30240, 32760, 23569920, 45532800, 14182439040, 51001180160, 153003540480, 403031236608, 13661860101120, 154345556085770649600, 9186050031556349952000, 143573364313605309726720, 352338107624535891640320, 680489641226538823680000, 34384125938411324962897920
Offset: 1
k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers.
-
q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* Amiram Eldar, May 09 2024 *)
-
isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ Michel Marcus, Dec 10 2013
-
is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d);} \\ Amiram Eldar, May 09 2024
A046986
Multiply perfect numbers that are also harmonic numbers but are not arithmetic numbers.
Original entry on oeis.org
28, 496, 8128, 2178540, 33550336, 142990848, 459818240, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1
k = 2178540 is a term since s0 = d(k) = 216 and s1 = sigma(k) = 8714160, s1/s0 = 8714160/216 = 121030/3 is not an integer, and (k * s0)/s1 = (2178540 * 216)/8714160 = 54 and s1/k = 8714160/2178540 = 4 are integers.
A046999
Numbers k whose average divisor is nonintegral and divides k.
Original entry on oeis.org
28, 496, 8128, 950976, 2178540, 33550336, 142990848, 301953024, 459818240, 675347400, 714954240, 995248800, 1379454720, 2701389600, 3288789504, 6720569856, 8589869056, 10200236032, 14254365440, 30600708096, 42763096320, 43861478400, 66433720320, 71271827200
Offset: 1
k=28, sigma_0=6, sigma_1=56, m=sigma_1/sigma_0=9.333... is not an integer, but k/m=3 is;
k=950976, m=2958592/84=3521.333... but k/m=27 is integral.
A325026
Multi-perfect numbers from A007691 that are not harmonic (A001599).
Original entry on oeis.org
120, 523776, 1476304896, 31998395520, 518666803200, 30823866178560, 740344994887680, 796928461056000, 212517062615531520, 69357059049509038080, 87934476737668055040, 170206605192656148480, 1161492388333469337600, 1802582780370364661760, 1940351499647188992000
Offset: 1
120 is a term because 120*tau(120)/sigma(120) = 120*16/360 = 16/3.
Cf.
A140798 (harmonic numbers that are not multi-perfect).
-
[n: n in [1..1000000] | not IsIntegral((NumberOfDivisors(n)) * n / SumOfDivisors(n)) and IsIntegral(SumOfDivisors(n)/n)]
-
isok(n) = my(s=sigma(n)); !frac(s/n) && frac(n*numdiv(n)/s); \\ Michel Marcus, Mar 24 2019
A330533
Multiply-perfect numbers m whose average divisor is not an integer.
Original entry on oeis.org
28, 120, 496, 8128, 523776, 2178540, 33550336, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 31998395520, 43861478400, 66433720320, 137438691328, 704575228896, 30823866178560, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904
Offset: 1
-
[m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(SumOfDivisors(m) / m)];
-
Select[Range[10^6], Divisible[(s = DivisorSigma[1, #]), #] && !Divisible[s, DivisorSigma[0, #]] &] (* Amiram Eldar, Dec 19 2019 *)
Showing 1-7 of 7 results.
Comments