A006980 Compositions: 6th column of A048004.
1, 2, 5, 12, 28, 64, 143, 315, 687, 1485, 3186, 6792, 14401, 30391, 63872, 133751, 279177, 581040, 1206151, 2497895, 5161982, 10646564, 21919161, 45052841, 92461171, 189489255, 387830160, 792810956, 1618840800, 3301999647
Offset: 6
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
- J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-2,-4,-5,-4,-3,-2,-1).
Programs
-
Maple
a:= n-> (Matrix(11, (i,j)-> if i=j-1 then 1 elif j=1 then [2, 1, 0, -1, -2, -4, -5, -4, -3, -2, -1][i] else 0 fi)^n) [1,7]: seq(a(n), n=6..40); # Alois P. Heinz, Oct 29 2008
-
PARI
Vec(1/(1-x-x^2-x^3-x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2013
Formula
G.f.: x^6 / ((1-x-x^2-x^3-x^4-x^5) * (1-x-x^2-x^3-x^4-x^5-x^6)). - Alois P. Heinz, Oct 29 2008
G.f.: x^6 * (1-x)^2 / ((1-2*x+x^6) * (1-2*x+x^7)). - Félix Balado, May 20 2025
Extensions
Corrected definition: 6th column of A048004. - Geoffrey Critzer, Nov 09 2008
Comments