cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050351 Number of 3-level labeled linear rooted trees with n leaves.

Original entry on oeis.org

1, 1, 5, 37, 365, 4501, 66605, 1149877, 22687565, 503589781, 12420052205, 336947795317, 9972186170765, 319727684645461, 11039636939221805, 408406422098722357, 16116066766061589965, 675700891505466507541
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

Lists of lists of sets.

Examples

			G.f. = 1 + x + 5*x^2 + 37*x^3 + 365*x^4 + 4501*x^5 + 66605*x^6 + ...
		

References

  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.

Crossrefs

Equals 1/2 * A004123(n) for n>0.

Programs

  • Maple
    with(combstruct); SeqSeqSetL := [T, {T=Sequence(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},labeled];
  • Mathematica
    With[{nn=20},CoefficientList[Series[(2-E^x)/(3-2*E^x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 29 2012 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1/(2 - 1/(2 - Exp[x])), {x, 0, n}]]; (* Michael Somos, Nov 28 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( 1/(2 - 1/(2 - exp(x + x * O(x^n)))), n))};
    
  • PARI
    {a(n)=if(n==0, 1, (1/6)*round(suminf(k=1, k^n * (2/3)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
    
  • Sage
    A050351 = lambda n: sum(stirling_number2(n,k)*(2^(k-1))*factorial(k) for k in (0..n)) if n>0 else 1
    [A050351(n) for n in (0..17)] # Peter Luschny, Jan 18 2016

Formula

E.g.f.: (2-exp(x))/(3-2*exp(x)).
a(n) is asymptotic to (1/6)*n!/log(3/2)^(n+1). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=3, so a(n)=(1/6)*sum(k>=0, (2/3)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
a(n) = Sum_{k=1..n} Stirling2(n, k)*k!*2^(k-1). - Vladeta Jovovic, Sep 28 2003
Recurrence: a(n+1) = 1 + 2*Sum_{j=1..n} binomial(n+1, j)*a(j). - Jon Perry, Apr 25 2005
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i and prod_{j=1}^{d(i)} = product over j one has: a(n)=sum_{i=1}^{p(n)}(n!/(prod_{j=1}^{p(i)}p(i, j)!))*(p(i)!/(prod_{j=1}^{d(i)} m(i, j)!))*2^(p(i)-1). - Thomas Wieder, May 18 2005
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 1/2. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-3*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/6) * Sum_{k>=1} k^n * (2/3)^k for n>0. - Paul D. Hanna, Nov 28 2014
E.g.f. A(x) satisfies 0 = 2 - A'(x) - 7*A(x) + 6*A(x)^2. - Michael Somos, Nov 28 2014

A050352 Number of 4-level labeled linear rooted trees with n leaves.

Original entry on oeis.org

1, 1, 7, 73, 1015, 17641, 367927, 8952553, 248956855, 7788499561, 270732878647, 10351919533033, 431806658432695, 19512813265643881, 949587798053709367, 49512355251796513513, 2753726282896986372535, 162725978752448205162601
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Crossrefs

Equals 1/3 * A032033(n) for n>0.

Programs

  • Magma
    [1] cat [(&+[3^(j-1)*Factorial(j)*StirlingSecond(n,j): j in [1..n]]) : n in [0..20]]; // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series( (3-2*exp(x))/(4-3*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    With[{nn=20}, CoefficientList[Series[(3-2Exp[x])/(4-3Exp[x]),{x,0,nn}], x]*Range[0,nn]!] (* Harvey P. Dale, Aug 16 2012 *)
  • PARI
    a(n)=n!*if(n<0,0,polcoeff((3-2*exp(x))/(4-3*exp(x))+O(x^(n+1)),n))
    
  • PARI
    {a(n)=if(n==0, 1, (1/12)*round(suminf(k=1, k^n * (3/4)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
    
  • Sage
    [1]+[sum( 3^(j-1)*factorial(j)*stirling_number2(n,j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020

Formula

E.g.f.: (3 - 2*exp(x))/(4 - 3*exp(x)).
a(n) is asymptotic to (1/12)*n!/log(4/3)^(n+1). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=4, so a(n)=(1/12)*sum(k>=0, (3/4)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 1. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-4*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/12) * Sum_{k>=1} k^n * (3/4)^k for n>0. - Paul D. Hanna, Nov 28 2014
a(n) = Sum_{k=1..n} Stirling2(n, k) * k! * 3^(k-1). - Paul D. Hanna, Nov 28 2014, after Vladeta Jovovic in A050351
a(n) = 1 + 3 * Sum_{k=1..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020

A050353 Number of 5-level labeled linear rooted trees with n leaves.

Original entry on oeis.org

1, 1, 9, 121, 2169, 48601, 1306809, 40994521, 1469709369, 59277466201, 2656472295609, 130952452264921, 7042235448544569, 410269802967187801, 25740278881968596409, 1730295054262416751321, 124066865052334175027769
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Crossrefs

Equals 1/4 * A094417(n) for n>0.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (4-3*Exp(x))/(5-4*Exp(x)) ))); // G. C. Greubel, Jun 08 2020
    
  • Maple
    seq(coeff(series( (4-3*exp(x))/(5-4*exp(x)), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Jun 08 2020
  • Mathematica
    max = 16; f[x_] := (4-3*E^x) / (5-4*E^x); CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
  • PARI
    a(n)=n!*if(n<0,0,polcoeff((4-3*exp(x))/(5-4*exp(x))+O(x^(n+1)),n))
    
  • PARI
    {a(n)=if(n==0,1,(1/20)*round(suminf(k=1, k^n * (4/5)^k *1.)))} \\ Paul D. Hanna, Nov 28 2014
    
  • Sage
    [1]+[sum( 4^(j-1)*factorial(j)*stirling_number2(n,j) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Jun 08 2020

Formula

E.g.f.: (4 - 3*exp(x))/(5 - 4*exp(x)).
a(n) is asymptotic to (1/20)*n!/log(5/4)^(n+1). More generally if m>1, the number of m-level labeled linear rooted trees with n leaves is asymptotic to n!/log(m/(m-1))^(n+1)/(m^2-m). - Benoit Cloitre, Jan 30 2003
For m-level trees (m>1), e.g.f. is (m-1-(m-2)*e^x)/(m-(m-1)*e^x) and number of trees is 1/(m*(m-1))*sum(k>=0, (1-1/m)^k*k^n). Here m=5, so a(n)=(1/20)*sum(k>=0, (4/5)^k*k^n) (for n>0). - Benoit Cloitre, Jan 30 2003
Let f(x) = (1+x)*(1+2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 3/2. Compare with the result A000670(n) = D^(n-1)(1) at x = 0. See also A194649. - Peter Bala, Sep 05 2011
E.g.f.: 1 + x/(G(0)-5*x) where G(k)= x + k + 1 - x*(k+1)/G(k+1); (continued fraction Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jul 11 2012
a(n) = (1/20) * Sum_{k>=1} k^n * (4/5)^k for n>0. - Paul D. Hanna, Nov 28 2014
a(n) = Sum_{k=1..n} Stirling2(n, k) * k! * 4^(k-1). - Paul D. Hanna, Nov 28 2014, after Vladeta Jovovic in A050351
a(n) = 1 + 4 * Sum_{k=1..n-1} binomial(n,k) * a(k). - Ilya Gutkovskiy, Jun 08 2020

A050354 Number of ordered factorizations of n with one level of parentheses.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 9, 3, 5, 1, 21, 1, 5, 5, 27, 1, 21, 1, 21, 5, 5, 1, 81, 3, 5, 9, 21, 1, 37, 1, 81, 5, 5, 5, 111, 1, 5, 5, 81, 1, 37, 1, 21, 21, 5, 1, 297, 3, 21, 5, 21, 1, 81, 5, 81, 5, 5, 1, 201, 1, 5, 21, 243, 5, 37, 1, 21, 5, 37, 1, 513, 1, 5, 21, 21, 5, 37, 1, 297, 27, 5, 1, 201
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
Dirichlet inverse of (A074206*A153881). - Mats Granvik, Jan 12 2009

Examples

			For n=6, we have (6) = (3*2) = (2*3) = (3)*(2) = (2)*(3), thus a(6) = 5.
		

Crossrefs

Programs

  • Mathematica
    A[n_]:=If[n==1, n/2, 2*Sum[If[dIndranil Ghosh, May 19 2017 *)
  • PARI
    A050354aux(n) = if(1==n,n/2, 2*sumdiv(n,d, if(dA050354aux(d), 0)));
    A050354(n) = if(1==n,n,A050354aux(n)); \\ Antti Karttunen, May 19 2017, after Jovovic's general recurrence.
    
  • Sage
    def A(n): return 1/2 if n==1 else 2*sum(A(d) for d in divisors(n) if dIndranil Ghosh, May 19 2017, after Antti Karttunen's PARI program

Formula

Dirichlet g.f.: (2-zeta(s))/(3-2*zeta(s)).
Recurrence for number of ordered factorizations of n with k-1 levels of parentheses is a(n) = k*Sum_{d|n, d1, a(1)= 1/k. - Vladeta Jovovic, May 25 2005
a(p^k) = 3^(k-1).
a(A002110(n)) = A050351(n).
Sum_{k=1..n} a(k) ~ -n^r / (4*r*Zeta'(r)), where r = 2.185285451787482231198145140899733642292971552057774261555354324536... is the root of the equation Zeta(r) = 3/2. - Vaclav Kotesovec, Feb 02 2019

Extensions

Duplicate comment removed by R. J. Mathar, Jul 15 2010

A050356 Number of ordered factorizations of n with 2 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 1, 16, 4, 7, 1, 40, 1, 7, 7, 64, 1, 40, 1, 40, 7, 7, 1, 208, 4, 7, 16, 40, 1, 73, 1, 256, 7, 7, 7, 292, 1, 7, 7, 208, 1, 73, 1, 40, 40, 7, 1, 1024, 4, 40, 7, 40, 1, 208, 7, 208, 7, 7, 1, 544, 1, 7, 40, 1024, 7, 73, 1, 40, 7, 73, 1, 1840, 1, 7, 40, 40, 7, 73, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Examples

			For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.
		

Crossrefs

Programs

Formula

Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).
a(p^k) = 4^(k-1).
a(A002110(n)) = A050352(n).
Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019

A050358 Number of ordered factorizations of n with 3 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 25, 5, 9, 1, 65, 1, 9, 9, 125, 1, 65, 1, 65, 9, 9, 1, 425, 5, 9, 25, 65, 1, 121, 1, 625, 9, 9, 9, 605, 1, 9, 9, 425, 1, 121, 1, 65, 65, 9, 1, 2625, 5, 65, 9, 65, 1, 425, 9, 425, 9, 9, 1, 1145, 1, 9, 65, 3125, 9, 121, 1, 65, 9, 121, 1, 4825, 1, 9, 65, 65, 9, 121
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - R. J. Mathar, Jul 15 2010

Examples

			6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))).
		

Crossrefs

Cf. A002033, A050351-A050359. a(p^k)=5^(k-1). a(A002110)=A050353.

Formula

Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)).
a(n) = A050359(A101296(n)). - R. J. Mathar, May 26 2017
Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - Vaclav Kotesovec, Feb 02 2019
Showing 1-6 of 6 results.