cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020

A053650 Cototient function of n^2.

Original entry on oeis.org

0, 2, 3, 8, 5, 24, 7, 32, 27, 60, 11, 96, 13, 112, 105, 128, 17, 216, 19, 240, 189, 264, 23, 384, 125, 364, 243, 448, 29, 660, 31, 512, 429, 612, 385, 864, 37, 760, 585, 960, 41, 1260, 43, 1056, 945, 1104, 47, 1536, 343, 1500, 969, 1456, 53, 1944, 825, 1792, 1197
Offset: 1

Views

Author

Labos Elemer, Feb 18 2000

Keywords

Comments

Seems to be invertible like n*Phi(n). Compare with A002618, A038040.

Crossrefs

Programs

Formula

a(n) = n*(n - phi(n)) = n^2 - n*phi(n) = Cototient(n^2) = A051953(A000290(n)).
a(n) = n^2 - A002618(n).
For p prime, Cototient(p)=1 and a(p)=p.
a(n) = n*cototient(n) = n*A051953(n). - Omar E. Pol, Nov 22 2012
Dirichlet g.f.: zeta(s-2)*(1 - 1/zeta(s-1)). - Ilya Gutkovskiy, Jul 26 2016
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023

A299714 Irregular triangle read by rows: row n contains numbers k such that 1<=k<=2*n+1 and gcd(n-k, 2*n+1) != 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 7, 5, 6, 1, 2, 4, 7, 10, 12, 13, 8, 9, 1, 3, 4, 7, 10, 13, 16, 17, 19, 11, 2, 7, 12, 17, 22, 1, 4, 7, 10, 13, 16, 19, 22, 25, 14, 15, 1, 4, 5, 7, 10, 13, 16, 19, 22, 25, 27, 28, 31, 2, 3, 7, 10, 12, 17, 22, 24, 27, 31, 32, 18, 1, 4, 6, 7, 10, 13, 16, 19, 22, 25, 28, 31, 32, 34, 37, 20, 21, 1, 2, 4, 7, 10, 12, 13
Offset: 1

Views

Author

Joerg Arndt, Feb 17 2018

Keywords

Comments

Row n contains 2*n+1 - phi(2*n+1) = A053193(n) terms. Row n has just one term (namely n) if 2*n+1 is prime.
If we extend each row [r,s, ..., z] to infinite length by appending [j*N*r,j*N*s, ..., j*N*z] for j>=1 and N=2*n+1 we obtain a relation on pairs of positive numbers (u,v). Write R(u,v) if v appears in row u (the relation is 1 on the pair (u,v)). Then R(u,u), R(u,v) ==> R(v, u), R(u,v) ==> R(u, v mod (2*u+1) ), and R(u,v) and v > u ==> R(u-(v-u), v-(v-u)) = R(2*u - v, u).

Examples

			Triangle starts:
[01]: [1]
[02]: [2]
[03]: [3]
[04]: [1, 4, 7]
[05]: [5]
[06]: [6]
[07]: [1, 2, 4, 7, 10, 12, 13]
[08]: [8]
[09]: [9]
[10]: [1, 3, 4, 7, 10, 13, 16, 17, 19]
[11]: [11]
[12]: [2, 7, 12, 17, 22]
[13]: [1, 4, 7, 10, 13, 16, 19, 22, 25]
[14]: [14]
[15]: [15]
[16]: [1, 4, 5, 7, 10, 13, 16, 19, 22, 25, 27, 28, 31]
[17]: [2, 3, 7, 10, 12, 17, 22, 24, 27, 31, 32]
[18]: [18]
...
		

Crossrefs

Cf. A300288.

Programs

  • Maple
    T:= n-> select(k-> igcd(n-k, 2*n+1)<>1, [$1..2*n+1])[]:
    seq(T(n), n=1..25);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    A299714row[n_]:=With[{q=2n+1},If[PrimeQ[q],{n},Select[Range[q],GCD[n-#,q]!=1&]]];Array[A299714row,20] (* Paolo Xausa, Nov 10 2023 *)
  • PARI
    is(n,k)= ( gcd(n-k, 2*n+1)!=1 );
    for (n=1, 33, for (k=1, 2*n+1, if ( is(n,k), print1(k,", ") ); ); );

Formula

T(n,k) = A300288(n,k) - n.

A300288 Irregular triangle read by rows: row n lists the numbers k such that -n <= k <= n and gcd(k, 2*n+1) != 1.

Original entry on oeis.org

0, 0, 0, -3, 0, 3, 0, 0, -6, -5, -3, 0, 3, 5, 6, 0, 0, -9, -7, -6, -3, 0, 3, 6, 7, 9, 0, -10, -5, 0, 5, 10, -12, -9, -6, -3, 0, 3, 6, 9, 12, 0, 0, -15, -12, -11, -9, -6, -3, 0, 3, 6, 9, 11, 12, 15, -15, -14, -10, -7, -5, 0, 5, 7, 10, 14, 15, 0, -18, -15, -13, -12, -9, -6, -3, 0, 3, 6, 9, 12, 13, 15, 18, 0
Offset: 1

Views

Author

Joerg Arndt, Mar 02 2018

Keywords

Comments

Row n contains 2*n+1 - phi(2*n+1) = A053193(n) terms. Row n has just one term (namely 0) if 2*n+1 is prime.

Examples

			Triangle starts:
[01]:  0,
[02]:  0,
[03]:  0,
[04]: -3, 0, 3,
[05]:  0,
[06]:  0,
[07]: -6, -5, -3, 0, 3, 5, 6,
[08]:  0,
[09]:  0,
[10]: -9, -7, -6, -3, 0, 3, 6, 7, 9,
[11]:  0,
[12]: -10, -5, 0, 5, 10,
[13]: -12, -9, -6, -3, 0, 3, 6, 9, 12,
[14]:  0,
[15]:  0,
[16]: -15, -12, -11, -9, -6, -3, 0, 3, 6, 9, 11, 12, 15,
[17]: -15, -14, -10, -7, -5, 0, 5, 7, 10, 14, 15,
[18]:  0,
[19]: -18, -15, -13, -12, -9, -6, -3, 0, 3, 6, 9, 12, 13, 15, 18,
[20]:  0,
...
		

Crossrefs

Programs

  • Mathematica
    A300288row[n_]:=With[{q=2n+1},If[PrimeQ[q],{0},Select[Range[-n, n],GCD[#, q]!=1&]]];Array[A300288row,20] (* Paolo Xausa, Nov 10 2023 *)
  • PARI
    is(n, k)= ( gcd(k, 2*n+1)!=1 );
    for (n=1, 33, for (k=-n, +n, if (is(n, k), print1(k, ", ") ); ); );

Formula

T(n,k) = A299714(n,k) - n.
Showing 1-4 of 4 results.