cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001157 a(n) = sigma_2(n): sum of squares of divisors of n.

Original entry on oeis.org

1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290, 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962, 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850, 2562, 2366, 2650, 2210, 3410, 2451, 3255
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
sigma_2(n) is the sum of the squares of the divisors of n.
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001.
Row sums of triangles A134575 and A134559. - Gary W. Adamson, Nov 02 2007
Also sum of square divisors of n^2. - Michel Marcus, Jan 14 2014
Conjecture: For each k = 2,3,..., all the rational numbers sigma_k(n)/n^k = Sum_{d|n} 1/d^k (n = 1,2,3,...) have pairwise distinct fractional parts. - Zhi-Wei Sun, Oct 15 2015
5 is the only prime entry in the sequence. - Drake Thomas, Dec 18 2016
4*a(n) = sum of squares of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 11.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table I. The entry 53 should be 50. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A192794, A082063 (gcd(a(n),n) and its largest prime factor); A179931, A192795 (gcd(a(n),A000203(n)) and largest prime factor).
Main diagonal of the array in A242639.
Cf. A333972 (Dgf at s=4).

Programs

  • Haskell
    a001157 n = s n 1 1 a000040_list where
       s 1 1 y _          = y
       s m x y ps'@(p:ps)
         | m `mod` p == 0 = s (m `div` p) (x * p^2) y ps'
         | x > 1          = s m 1 (y * (x * p^2 - 1) `div` (p^2 - 1)) ps
         | otherwise      = s m 1 y ps
    -- Reinhard Zumkeller, Jul 10 2011
    
  • Magma
    [DivisorSigma(2,n): n in [1..50]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    with(numtheory); A001157 := n->sigma[2](n); [seq(sigma[2](n), n=1..100)];
  • Mathematica
    Table[DivisorSigma[2, n], {n, 1, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    DivisorSigma[2,Range[50]] (* Harvey P. Dale, Aug 22 2016 *)
  • Maxima
    makelist(divsum(n,2),n,1,20); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    a(n)=if(n<1,0,sigma(n,2))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)/(1-p^2*X))[n])
    
  • PARI
    a(n)=if(n<1,0,n*polcoeff(sum(k=1,n,x^k/(x^k-1)^2/k,x*O(x^n)),n)) /* Michael Somos, Jan 29 2005 */
    
  • PARI
    N=99; q='q+O('q^N); Vec(sum(n=1,N,n^2*q^n/(1-q^n)))  /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    a(n) = sumdiv(n^2, d, issquare(d)*d); \\ Michel Marcus, Jan 14 2014
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 2)
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 05 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(2*e+2)-1)//(p**2-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
  • Sage
    [sigma(n,2)for n in range(1,51)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>0} k^2 x^k/(1-x^k). Dirichlet g.f.: zeta(s)*zeta(s-2). - Michael Somos, Apr 05 2003
Multiplicative with a(p^e) = (p^(2e+2)-1)/(p^2-1). - David W. Wilson, Aug 01 2001
G.f. for sigma_k(n): Sum_{m>0} m^k*x^m/(1-x^m). - Vladeta Jovovic, Oct 18 2002
L.g.f.: -log(Product_{j>=1} (1-x^j)^j) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Equals A127093 * [1, 2, 3, ...]. - Gary W. Adamson, May 10 2007
Equals A051731 * [1, 4, 9, 16, 25, ...]. A051731 * [1/1, 1/2, 1/3, 1/4, ...] = [1/1, 5/4, 10/9, 21/16, 26/25, ...]. - Gary W. Adamson, Nov 02 2007
Row sums of triangle A134841. - Gary W. Adamson, Nov 12 2007
a(n) = A035316(n^2). - Michel Marcus, Jan 14 2014
Conjecture: a(n) = sigma(n^2*rad(n))/sigma(rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
G.f.: Sum_{k>=1} x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = a(n/4) + A050461(n) + A076577(n/2) + A050465(n) where A(.) are zero for non-integer arguments. - R. J. Mathar, May 25 2020
Sum_{k>=1} 1/a(k) = A109694 = 1.53781289182725616253866100273826833091936004947322354929617689659426330445... - Vaclav Kotesovec, Sep 26 2020
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 - ((n-1)^2 - 2)*q^n - ((n+1)^2 - 2)*q^(2*n) + n^2*q^(3*n))/(1 - q^n)^3 - apply the operator x*d/dx twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Sum_{k=1..n} a(k) = A064602(n) ~ zeta(3) * n^3 / 3.
Sum_{k=1..n} (-1)^k * a(k) ~ zeta(3) * n^3 / 24. (End)
a(n) = Sum_{1 <= i, j <= n} tau(gcd(i, j, n)) = Sum_{d divides n} tau(d) * J_2(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A175199 a(n) is the smallest integer k such that sigma_2(k) = sigma_2(k + 2n), where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

24, 430, 645, 860, 120, 864, 168, 1720, 1935, 10790, 264, 2580, 2795, 1570, 16185, 3440, 408, 3870, 456, 21580, 2355, 4730, 552, 5160, 600, 5590, 5805, 3140, 696, 4320, 744, 6880, 7095, 1248, 840, 7740, 888, 8170, 8385, 43160, 984, 4710, 1032, 9460
Offset: 1

Views

Author

Michel Lagneau, Mar 03 2010

Keywords

Comments

The equation sigma_2(n) = sigma_2(n + p) has infinitely many solutions where p >= 2 and p is even (J. M. De Koninck).

Examples

			For n=1, sigma_2(24) = sigma_2(26) = 850.
For n=2, sigma_2(430) = sigma_2(434) = 240500.
For n=3, sigma_2(645) = sigma_2(651) = 481000.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.

Crossrefs

Programs

  • Maple
    with(numtheory):for k from 2 by 2 to 200 do :indic:=0:for n from 1 to 100000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+k):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 and indic=0 then print(k):print(n):indic:=1:else fi:od:od:

Extensions

Edited by Robert Israel, Aug 02 2024

A291108 Expansion of Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).

Original entry on oeis.org

0, 0, 0, 4, 0, 13, 0, 20, 9, 29, 0, 65, 0, 53, 34, 84, 0, 130, 0, 145, 58, 125, 0, 273, 25, 173, 90, 265, 0, 399, 0, 340, 130, 293, 74, 614, 0, 365, 178, 609, 0, 735, 0, 625, 340, 533, 0, 1105, 49, 754, 298, 865, 0, 1183, 146, 1113, 370, 845, 0, 1859, 0, 965, 580, 1364, 194, 1743, 0, 1465, 538, 1599, 0, 2550, 0, 1373, 884
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Sum of squares of divisors of n except 1 and n^2 (sum of squares of nontrivial divisors of n).

Examples

			a(6) = 13 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial {2, 3} and 2^2 + 3^2 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; Rest[CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]]
    Join[{0}, Table[DivisorSigma[2, n] - n^2 - 1, {n, 2, 75}]]
  • PARI
    A291108(n) = sumdiv(n,d,if((1==d)||(n==d),0,d^2)); \\ Antti Karttunen, Jan 22 2025

Formula

G.f.: Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).
a(n) = A001157(n) - A000290(n) - 1 for n > 1.
a(n) = A067558(n) - 1 for n > 1.
a(n) = A005063(n) if n is a semiprime (A001358).
a(n) = 0 if n is a prime or 1 (A008578).
a(n) = n if n is a square of prime (A001248).
a(p^k) = (p^(2*k) - p^2)/(p^2 - 1) for p is a prime and k > 0.
Showing 1-3 of 3 results.