A058798
a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
Other recurrences of this type:
A001040,
A036242,
A036244,
A053983,
A053984,
A053987,
A058307,
A058308,
A058309,
A058797,
A058799,
A075374,
A106174,
A121323,
A121351,
A121353,
A121354,
A222468,
A222470.
-
a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
-
[0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
-
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
-
m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
-
def A058798(n):
if n < 3: return n
return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
[simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
A053988
Denominators of successive convergents to tan(1/2) using continued fraction 1/(2-1/(6-1/(10-1/(14-1/(18-1/(22-1/(26-1/30-...))))))).
Original entry on oeis.org
2, 11, 108, 1501, 26910, 590519, 15326584, 459207001, 15597711450, 592253828099, 24859063068708, 1142924647332469, 57121373303554742, 3083411233744623599, 178780730183884614000, 11081321860167101444401, 731188462040844810716466, 51172111020998969648708219
Offset: 1
-
[(&+[ (-1)^k*Factorial(2*n-2*k)/(Factorial(n-2*k)*Factorial(2*k)): k in [0..Floor(n/2)]] ): n in [1..20]]; // G. C. Greubel, May 13 2020
-
a:= n -> add((-1)^k*(2*n-2*k)!/((n-2*k)!*(2*k)!), k = 0..floor(n/2));
seq(a(n), n = 1..20); # G. C. Greubel, May 13 2020
-
Table[Sum[(-1)^k*(2*n-2*k)!/((n-2*k)!*(2*k)!), {k,0,Floor[n/2]}], {n, 20}] (* G. C. Greubel, May 13 2020 *)
-
a(n)=sum(k=0,floor(n/2),(-1)^k*(2*n-2*k)!/(n-2*k)!/(2*k)!) \\ Benoit Cloitre, Jan 03 2006
-
[sum((-1)^k*factorial(2*n-2*k)/(factorial(n-2*k)*factorial(2*k)) for k in (0..floor(n/2))) for n in (1..20)] # G. C. Greubel, May 13 2020
A334823
Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0
Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
1;
1, 0;
3, 0, -1;
15, 0, -6, 0;
105, 0, -45, 0, 1;
945, 0, -420, 0, 15, 0;
10395, 0, -4725, 0, 210, 0, -1;
135135, 0, -62370, 0, 3150, 0, -28, 0;
2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A334824
Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0
Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
1;
3, 0;
15, 0, -1;
105, 0, -10, 0;
945, 0, -105, 0, 1;
10395, 0, -1260, 0, 21, 0;
135135, 0, -17325, 0, 378, 0, -1;
2027025, 0, -270270, 0, 6930, 0, -36, 0.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
Showing 1-4 of 4 results.
Comments