cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A055670 a(n) = prime(n) - (-1)^prime(n).

Original entry on oeis.org

1, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

Number of right-inequivalent prime Hurwitz quaternions of norm p, where p = n-th rational prime (indexed by A000040).
Two primes are considered right-equivalent if they differ by right multiplication by one of the 24 units. - N. J. A. Sloane
Start of n-th run of consecutive nonprime numbers. Since 2 is the only even prime, for all other prime numbers the expression "- (-1)^(n-th prime)" works out to "+ 1." - Alonso del Arte, Oct 18 2011

Examples

			a(1) = 2 - (-1)^2 = 1, a(2) = 3 - (-1)^3 = 4.
		

References

  • L. E. Dickson, Algebras and Their Arithmetics, Dover, 1960, Section 91.
  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, page 134.

Crossrefs

a(n) = A083503(p) for n>1.

Programs

  • Mathematica
    Join[{1},Prime[Range[2,70]]+1] (* Harvey P. Dale, Oct 29 2013 *)

Formula

a(n) = prime(n)+1 = A008864(n) for n >= 2. a(n) = A055669(n)/24.

Extensions

More terms from David W. Wilson, May 02 2001
I would also like to get the sequences of inequivalent prime Hurwitz quaternions, where two primes are considered equivalent if they differ by left or right multiplication by one of the 24 units. This will give two more sequences, analogs of A055670 and A055672.
Edited by N. J. A. Sloane, Aug 16 2009

A055673 Absolute values of norms of primes in ring of integers Z[sqrt(2)].

Original entry on oeis.org

2, 7, 9, 17, 23, 25, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 121, 127, 137, 151, 167, 169, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 361, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

The integers have the form z = a + b*sqrt(2), a and b rational integers. The norm of z is a^2 - 2*b^2, which may be negative.

References

  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VII.

Crossrefs

Programs

  • Mathematica
    maxNorm = 593; s1 = Select[Range[-1, maxNorm, 8], PrimeQ]; s2 = Select[Range[1, maxNorm, 8], PrimeQ]; s3 = Select[Range[-3, Sqrt[maxNorm], 8], PrimeQ]^2; s4 = Select[Range[3, Sqrt[maxNorm], 8], PrimeQ]^2; Union[{2}, s1, s2, s3, s4] (* Jean-François Alcover, Dec 07 2012, from formula *)
  • PARI
    is(n)=!!if(isprime(n), setsearch([1,2,7],n%8), issquare(n,&n) && isprime(n) && setsearch([3,5], n%8)) \\ Charles R Greathouse IV, Sep 10 2016

Formula

Consists of 2; rational primes = +-1 (mod 8); and squares of rational primes = +-3 (mod 8).

Extensions

I would also like to get the sequences (analogous to A055027 and A055029) giving the number of inequivalent primes mod units. Of course now there are infinitely many units.
More terms from Franklin T. Adams-Watters, May 05 2006

A055669 Number of prime Hurwitz quaternions of norm prime(n).

Original entry on oeis.org

24, 96, 144, 192, 288, 336, 432, 480, 576, 720, 768, 912, 1008, 1056, 1152, 1296, 1440, 1488, 1632, 1728, 1776, 1920, 2016, 2160, 2352, 2448, 2496, 2592, 2640, 2736, 3072, 3168, 3312, 3360, 3600, 3648, 3792, 3936, 4032, 4176, 4320, 4368, 4608, 4656, 4752
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

Number of vectors of norm p in D_4 lattice (cf. A004011).

References

  • L. E. Dickson, Algebras and Their Arithmetics, Dover, 1960, Section 91.

Crossrefs

Cf. A240068 (number of prime Lipschitz quaternions having norm prime(n)).

Programs

  • Mathematica
    Join[{24},24(#+1)&/@Prime[Range[2,50]]] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 24 * (prime(n)+1) = 24 * A008864(n) for n >= 2.
a(n) = 24*A055670(n).
a(n) = A004011(prime(n)). - R. J. Mathar, Aug 01 2025

Extensions

More terms from David W. Wilson, May 02 2001

A055671 Number of prime Hurwitz quaternions of norm n.

Original entry on oeis.org

0, 0, 24, 96, 0, 144, 0, 192, 0, 0, 0, 288, 0, 336, 0, 0, 0, 432, 0, 480, 0, 0, 0, 576, 0, 0, 0, 0, 0, 720, 0, 768, 0, 0, 0, 0, 0, 912, 0, 0, 0, 1008, 0, 1056, 0, 0, 0, 1152, 0, 0, 0, 0, 0, 1296, 0, 0, 0, 0, 0, 1440, 0, 1488, 0, 0, 0, 0, 0, 1632, 0, 0, 0, 1728, 0, 1776, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

References

  • L. E. Dickson, Algebras and Their Arithmetics, Dover, 1960, Section 91.

Crossrefs

Cf. A055669 (zeros removed), A055670, A055671, A055672.

Programs

Formula

a(n) = number of vectors of norm n in D_4 lattice (A004011) if n is a prime, otherwise a(n) = 0.

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jun 10 2005

A385603 Number of equivalence classes of Hurwitz quaternions of norm n with equivalence by left and right multiplication with units.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 3, 1, 4, 1, 2, 1, 4, 3, 4, 2, 3, 2, 4, 1, 4, 2, 4, 2, 5, 3, 6, 1, 4, 4, 5, 1, 7, 2, 4, 1, 7, 4, 6, 3, 5, 4, 6, 2, 8, 3, 5, 2, 7, 4, 10, 1, 8, 4, 7, 2, 8, 4, 6, 2, 8, 5, 11, 3, 8, 6, 8, 1, 11, 4, 7, 4, 10, 5, 10, 1, 8, 7, 12, 2, 12, 4, 10, 1, 10, 7, 13, 4, 9, 6, 10, 3, 16, 5, 9, 4, 11, 6, 14, 2, 10, 8, 12, 3, 17, 5, 12, 2, 12
Offset: 1

Views

Author

R. J. Mathar, Aug 02 2025

Keywords

Comments

Equivalence between Hurwitz quaternions q1 and q2 defined here: they are equivalent if units u1 and u2 exist such that q1 = u1* q2*u2. This is a relaxed requirement compared with A055672.

Crossrefs

Cf. A000593 (equivalence defined by q1 = q2*u2), A055672 (primes in A000593).
Showing 1-6 of 6 results.