cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A058798 a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0

Views

Author

Christian G. Bower, Dec 02 2000

Keywords

Comments

Note that a(n) = (a(n-1) + a(n+1))/(n+1). - T. D. Noe, Oct 12 2012; corrected by Gary Detlefs, Oct 26 2018
a(n) = log_2(A073888(n)) = log_3(A073889(n)).
a(n) equals minus the determinant of M(n+2) where M(n) is the n X n symmetric tridiagonal matrix with entries 1 just above and below its diagonal and diagonal entries 0, 1, 2, .., n-1. Example: M(4)=matrix([[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 2, 1], [0, 0, 1, 3]]). - Roland Bacher, Jun 19 2001
a(n) = A221913(n,-1), n>=1, is the numerator sequence of the n-th approximation of the continued fraction -(0 + K_{k>=1} (-1/k)) = 1/(1-1/(2-1/(3-1/(4-... The corresponding denominator sequence is A058797(n). - Wolfdieter Lang, Mar 08 2013
The recurrence equation a(n+1) = (A*n + B)*a(n) + C*a(n-1) with the initial conditions a(0) = 0, a(1) = 1 has the solution a(n) = Sum_{k = 0..floor((n-1)/2)} C^k*binomial(n-k-1,k)*( Product_{j = 1..n-2k-1} (k+j)*A + B ). This is the case A = 1, B = 1, C = -1. - Peter Bala, Aug 01 2013

Examples

			Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
		

Crossrefs

Column 1 of A007754.
Cf. A073888, A073889, A221913 (alternating row sums).

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
    
  • Magma
    [0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
    
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
  • PARI
    m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
  • Sage
    def A058798(n):
        if n < 3: return n
        return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
    [simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
    

Formula

a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*binomial(n-k-1,k)*(n-k)!/(k+1)!. - Peter Bala, Aug 01 2013
a(n) = A058797(n+1) + A058799(n-1). - Henry Bottomley, Feb 28 2001
a(n) = Pi*(BesselY(1, 2)*BesselJ(n+1, 2) - BesselJ(1,2)* BesselY(n+1,2)). See the Abramowitz-Stegun reference given under A103921, p. 361 eq. 9.1.27 (first line with Y, J and z=2) and p. 360, eq. 9.1.16 (Wronskian). - Wolfdieter Lang, Mar 05 2013
Limit_{n->oo} a(n)/n! = BesselJ(1,2) = 0.576724807756873... See a comment on asymptotics under A084950.
a(n) = n!*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4) for n >= 2. - Peter Luschny, Sep 10 2014

Extensions

New description from Amarnath Murthy, Aug 17 2002

A058294 Successive rows of a triangle, the columns of which are generalized Fibonacci sequences S(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 7, 10, 7, 3, 1, 1, 4, 13, 30, 43, 30, 13, 4, 1, 1, 5, 21, 68, 157, 225, 157, 68, 21, 5, 1, 1, 6, 31, 130, 421, 972, 1393, 972, 421, 130, 31, 6, 1, 1, 7, 43, 222, 931, 3015, 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1
Offset: 1

Views

Author

Russell Walsmith, Dec 07 2000

Keywords

Comments

From Reinhard Zumkeller, Sep 14 2014: (Start)
T(n,k) = A102473(n,k), k=1..n;
T(n,k) = A102472(n,k-n+1), k=n..2*n-1;
T(n,n) = A001040(n). (End)

Examples

			Triangle begins:
  1;
  1, 1, 1;
  1, 2, 3,  2, 1;
  1, 3, 7, 10, 7, 3, 1;
  ...
		

Crossrefs

A001040, A001053, A058307, A058308, A058309 are columns of this triangle.

Programs

  • Haskell
    a058294 n k = a058294_tabf !! (n-1) !! (k-1)
    a058294_row n = a058294_tabf !! (n-1)
    a058294_tabf = [1] : zipWith (++) xss (map (tail . reverse) xss)
                   where xss = tail a102473_tabl
    -- Reinhard Zumkeller, Sep 14 2014
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := t[n, k] = If[nJean-François Alcover, Oct 05 2016 *)

Formula

The j-th column S(j) is generated by a(n+1) = (n+j)*a(n) + a(n-1), a(0)=0, a(1)=1.

A062323 Triangle with a(n,n)=1, a(n,k)=(n-1)*a(n-1,k)+a(n-2,k) for n>k.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 7, 10, 7, 3, 1, 30, 43, 30, 13, 4, 1, 157, 225, 157, 68, 21, 5, 1, 972, 1393, 972, 421, 130, 31, 6, 1, 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1, 56660, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 516901, 740785, 516901, 223884
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2001

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 1, 1, 1;
[3] 2, 3, 2, 1;
[4] 7, 10, 7, 3, 1;
[5] 30, 43, 30, 13, 4, 1;
[6] 157, 225, 157, 68, 21, 5, 1;
[7] 972, 1393, 972, 421, 130, 31, 6, 1;
[8] 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1;
		

Crossrefs

Essentially the same as A058294, but more easy seen as a triangle. Columns include A001040, A001053, A058307, A058308, A058309. Other sequences appearing on the right hand side include A000012, A001477, A002061, A034262.

Programs

  • Haskell
    a062323 n k = a062323_tabl !! n !! k
    a062323_row n = a062323_tabl !! n
    a062323_tabl = map fst $ iterate f ([1], [0,1]) where
       f (us, vs) = (vs, ws) where
         ws = (zipWith (+) (us ++ [0]) (map (* v) vs)) ++ [1]
              where v = last (init vs) + 1
    -- Reinhard Zumkeller, Mar 05 2013

Formula

a(n, k)=k*a(n, k+1)+a(n, k+2) for n>k.

A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 10, 7, 3, 1, 0, 43, 30, 13, 4, 1, 0, 225, 157, 68, 21, 5, 1, 0, 1393, 972, 421, 130, 31, 6, 1, 0, 9976, 6961, 3015, 931, 222, 43, 7, 1, 0, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 0, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 12 2014

Keywords

Examples

			T(n, k) as a rectangular matrix (for n >= 0). Only the lower infinite triangle (0 <= k <=n) constitutes the sequence although T(n,k) is defined for all (n,k) in Z^2.
[   0,    1,   -1,   3, -10,  43, -225, 1393, -9976]
[   1,    0,    1,  -2,   7, -30,  157, -972,  6961]
[   1,    1,    0,   1,  -3,  13,  -68,  421, -3015]
[   3,    2,    1,   0,   1,  -4,   21, -130,   931]
[  10,    7,    3,   1,   0,   1,   -5,   31,  -222]
[  43,   30,   13,   4,   1,   0,    1,   -6,    43]
[ 225,  157,   68,  21,   5,   1,    0,    1,    -7]
[1393,  972,  421, 130,  31,   6,    1,    0,     1]
[9976, 6961, 3015, 931, 222,  43,    7,    1,     0]
The diagonals d(n,k) = T(n+k-floor(n/2),k-floor(n/2)) are represented by polynomials described in A246656.
   n\k:    0   1    2     3    4     p_n(x)
-------------------------------------------------------
d(0,k):    0,  0,   0,    0,   0, .. 0                   A000004
d(1,k):    1,  1,   1,    1,   1, .. 1                   A000012
d(2,k):  [0],  1,   2,    3,   4, .. x                   A001477
d(3,k):  [1],  3,   7,   13,  21, .. x^2+x+1             A002061
d(4,k):  [0,  2],  10,   30,  68, .. x^3+x               A034262
d(5,k):  [1,  7],  43,  157, 421, .. x^4+2*x^3+2*x^2+x+1
		

Crossrefs

T(n+0,0) = A001040(n).
T(n+1,1) = A001053(n+1).
T(n+2,2) = A058307(n).
T(n+3,3) = A058308(n).
T(n+4,4) = A058309(n).

Programs

  • Maple
    T := (n, k) -> (BesselK(n,2)*BesselI(k,2) - (-1)^(n+k)*BesselI(n,2) *BesselK(k,2))*2; seq(lprint(seq(round(evalf(T(n,k),99)), k=0..n)), n=0..8);
    # Recurrence
    T := proc(n,k) option remember; local m; m := n-1;
    if  k > m or k < 0 then 0 elif k = m then 1 else T(m-1,k) + m*T(m,k) fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..8);
  • Mathematica
    T[n_, k_] := T[n, k] = With[{m = n - 1}, If[k > m || k < 0, 0, If[k == m, 1, T[m - 1, k] + m*T[m, k]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
  • Sage
    def A246654_col(n, k): # k-th column of the triangle
        if n < 2: return n
        return hypergeometric([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4) *rising_factorial(k+1,n-1)
    for k in range(6): [round(A246654_col(n,k).n(100)) for n in (0..10)]

Formula

T(n+k,k) = hypergeom([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4)* Pochhammer(k+1, n-1).
Recurrence: T(n,k) = T(n-2,k)+(n-1)*T(n-1,k), T(n,n)=0, T(n,n-1)=1.
T(n,k) = T(n,-k) = T(-n,k) = T(-n,-k).

A246662 a(n) = 2*(K(n,2)*I(4,2) - (-1)^n*I(n,2)*K(4,2)) where I(n,x) and K(n,x) are Bessel functions.

Original entry on oeis.org

-10, 7, -3, 1, 0, 1, 5, 31, 222, 1807, 16485, 166657, 1849712, 22363201, 292571325, 4118361751, 62067997590, 997206323191, 17014575491837, 307259565176257, 5854946313840720, 117406185841990657, 2471384848995644517, 54487872863746170031, 1255692460715157555230
Offset: 0

Views

Author

Peter Luschny, Sep 12 2014

Keywords

Crossrefs

Cf. A058309.

Programs

  • Maple
    a := n -> 2*(BesselK(n,2)*BesselI(4,2)-(-1)^n*BesselI(n,2)* BesselK(4,2)); seq(round(evalf(a(n), 99)), n=0..24);

Formula

a(n) = a(-n).
a(n+4) = A058309(n).
Showing 1-5 of 5 results.