A001040
a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785, 7489051, 83120346, 1004933203, 13147251985, 185066460993, 2789144166880, 44811373131073, 764582487395121, 13807296146243251, 263103209266016890, 5275871481466581051, 111056404320064218961, 2448516766522879398193
Offset: 0
G.f. = x + x^2 + 3*x^3 + 10*x^4 + 43*x^5 + 225*x^6 + 1393*x^7 + 9976*x^8 + ...
- Archimedeans Problems Drive, Eureka, 22 (1959), 15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- C. Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773. doi: 10.4236/am.2013.45105. See Table 1.
- T. Doslic and R. Sharafdini, Hosoya index of splices, bridges and necklaces, Research Gate, 2015.
- Tomislav Doslic and R. Sharafdini, Hosoya Index of Splices, Bridges, and Necklaces, in Distance, Symmetry, and Topology in Carbon Nanomaterials, 2016, pp 147-156. Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9), doi:10.1007/978-3-319-31584-3_10.
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968
- S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Continued Fraction Constants
- Eric Weisstein's World of Mathematics, Generalized Continued Fraction
-
a001040 n = a001040_list !! n
a001040_list = 0 : 1 : zipWith (+)
a001040_list (zipWith (*) [1..] $ tail a001040_list)
-- Reinhard Zumkeller, Mar 05 2013
-
a:=[1,1]; [0] cat [n le 2 select a[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..23]]; // Marius A. Burtea, Nov 19 2019
-
A001040 := proc(n)
if n <= 1 then
n;
else
(n-1)*procname(n-1)+procname(n-2) ;
end if;
end proc: # R. J. Mathar, Mar 13 2015
-
Table[Permanent[Array[KroneckerDelta[#1, #2]*(#1) + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n - 1, n - 1}]], {n, 2, 30}] (* John M. Campbell, Jul 08 2011 *)
Join[{0},RecurrenceTable[{a[0]==1,a[1]==1,a[n]==n a[n-1]+a[n-2]}, a[n], {n,30}]] (* Harvey P. Dale, Aug 14 2011 *)
FullSimplify[Table[2(-BesselI[n,-2]BesselK[0,2]+BesselI[0,2]BesselK[n,2]),{n,0,20}]] (* Vaclav Kotesovec, Jan 05 2013 *)
-
{a(n) = contfracpnqn( vector(abs(n), i, i))[1, 2]}; /* Michael Somos, Sep 25 2005 */
-
def A001040(n):
if n < 2: return n
return factorial(n-1)*hypergeometric([1-n/2,-n/2+1/2], [1,1-n,1-n], 4)
[round(A001040(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 10 2014
A001053
a(n+1) = n*a(n) + a(n-1) with a(0)=1, a(1)=0.
Original entry on oeis.org
1, 0, 1, 2, 7, 30, 157, 972, 6961, 56660, 516901, 5225670, 57999271, 701216922, 9173819257, 129134686520, 1946194117057, 31268240559432, 533506283627401, 9634381345852650, 183586751854827751, 3681369418442407670, 77492344539145388821, 1708512949279640961732
Offset: 0
G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 30*x^5 + 157*x^6 + 972*x^7 + 6961*x^8 + ...
a(5) = 4*a(4) + a(3) = 4*7+2 = 30.
See A058279 and A058307 for similar recurrences and e.g.f.s. - _Wolfdieter Lang_, May 19 2010
- Archimedeans Problems Drive, Eureka, 20 (1957), 15.
- M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 35. [From N. J. A. Sloane, Jan 29 2009]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- S. B. Ekhad, Problem 10356, Amer. Math. Monthly, 101 (1994), 75. [From _N. J. A. Sloane_, Jan 29 2009]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Continued Fraction Constants
- Eric Weisstein's World of Mathematics, Generalized Continued Fraction
The square roots of the terms of
A144656.
-
a:=[0,1];; for n in [3..25] do a[n]:=(n-1)*a[n-1]+a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Sep 20 2019
-
a001053 n = a001053_list !! n
a001053_list = 1 : 0 :
zipWith (+) a001053_list (zipWith (*) [1..] $ tail a001053_list)
-- Reinhard Zumkeller, Nov 02 2011
-
I:=[0,1]; [1] cat [n le 2 select I[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..25]]; // G. C. Greubel, Sep 20 2019
-
a[0]:=1: a[1]:=0: for n from 2 to 23 do a[n]:=(n-1)*a[n-1]+a[n-2] od: seq(a[n],n=0..23); # Emeric Deutsch, Aug 16 2006
-
a[0]=1; a[1] =0; a[n_]:= (n-1)*a[n-1] + a[n-2]; Table[a[n], {n, 0, 21}] (* Robert G. Wilson v, Feb 24 2005 *)
a[0] = 1; a[1] = 0; a[n_] := Permanent[SparseArray[{{i_, i_} :> i-1, Band[{2, 1}] -> 1, Band[{1, 2}] -> 1}, {n, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* John M. Campbell, Jul 08 2011, updated by Jean-François Alcover, Nov 14 2016 *)
RecurrenceTable[{a[0]==1,a[1]==0,a[n]==(n-1)a[n-1]+a[n-2]},a,{n,30}] (* Harvey P. Dale, Jan 31 2013 *)
a[ n_] := With[ {m = Abs@n}, If[ m < 2, Boole[m == 0],
Gamma[m] HypergeometricPFQ[{3/2 - m/2, 1 - m/2}, {2, 2 - m, 1 - m}, 4]]]; (* Michael Somos, Nov 30 2018 *)
-
{a(n) = contfracpnqn(vector(abs(n), i, i))[2, 2]}; /* Michael Somos, Sep 25 2005 */
-
def A001053(n):
if n < 3: return 1 if n != 1 else 0
return gamma(n)*hypergeometric([3/2-n/2,1-n/2], [2,2-n,1-n], 4)
[round(A001053(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 11 2014
A058307
a(n) = (n+1)*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 3, 13, 68, 421, 3015, 24541, 223884, 2263381, 25121075, 303716281, 3973432728, 55931774473, 842950049823, 13543132571641, 231076203767720, 4172914800390601, 79516457411189139, 1594502063024173381, 33564059780918830140, 740003817243238436461, 17053651856375402868743
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..445 (terms n=0..100 from T. D. Noe)
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- C. Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773.
- S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
- Russell Walsmith, Cl-Chemy II
A column of
A058294. Except for first term, -1 times row sums of
A053495.
-
a:= function(n)
if n<2 then return n;
else return (n+1)*a(n-1) + a(n-2);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Oct 07 2019
-
[n le 2 select n-1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // Vincenzo Librandi, May 06 2013
-
A058307 := proc(n) option remember; if n <= 1 then n else A058307(n-2)+(n+1)*A058307(n-1); fi; end;
a:= proc(n) option remember;
if n<2 then n
else (n+1)*a(n-1) + a(n-2)
fi;
end:
seq(a(n), n=0..30); # G. C. Greubel, Oct 07 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n+1)*a[n-1]+a[n-2]}, a, {n, 0, 30}] (* Vincenzo Librandi, May 06 2013 *)
Table[FullSimplify[(-BesselI[2+n,-2] * BesselK[2,2] + BesselI[2,2] * BesselK[2+n,2]) / (BesselI[3,2] * BesselK[2,2] + BesselI[2,2] * BesselK[3,2])],{n,0,20}] (* Vaclav Kotesovec, Feb 14 2014 *)
a[n_]:= a[n]= If[n<2, n, (n+1)*a[n-1] +a[n-2]]; Table[a[n], {n,0,30}] (* G. C. Greubel, Oct 07 2019 *)
-
my(m=30, v=concat([0,1], vector(m-2))); for(n=3, m, v[n]=n*v[n-1] +v[n-2]); v \\ G. C. Greubel, Nov 24 2018
-
def A058307(n):
if n < 2: return n
return factorial(n+1)*hypergeometric([1/2-n/2,1-n/2], [3,-1-n,1-n], 4)/2
[round(A058307(n).n(100)) for n in (0..21)] # Peter Luschny, Sep 10 2014
-
@CachedFunction
def a(n):
if (n<2): return n
else: return (n+1)*a(n-1) + a(n-2)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 24 2018
A058309
a(n) = (n+3)*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 31, 222, 1807, 16485, 166657, 1849712, 22363201, 292571325, 4118361751, 62067997590, 997206323191, 17014575491837, 307259565176257, 5854946313840720, 117406185841990657, 2471384848995644517, 54487872863746170031, 1255692460715157555230
Offset: 0
G.f. = x + 5*x^2 + 31*x^3 + 222*x^4 + 1807*x^5 + 16485*x^6 + 166657*x^7 + ...
-
I:=[1,5]; [0] cat [n le 2 select I[n] else (n+3)*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 24 2018
-
bi:=n->BesselI(4+n,-2); bk:=n->BesselK(4+n,2); i:=n->BesselI(n,2);
k:=n->BesselK(n,2); a := n ->(bi(n)*(5*k(5)-k(6))+bk(n)*(5*i(5) +i(6)))/(i(6)*k(5)+i(5)*k(6)); seq(round(evalf(a(n),99)),n=0..20); # Peter Luschny, Sep 11 2014
-
a[0] = 0; a[1] = 1; a[n_] := a[n - 2] + (n + 3)*a[n - 1]; Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Sep 12 2014 *)
a[ n_] := With[{m = n + 4}, 2 (BesselK[m, 2] BesselI[4, 2] - (-1)^m BesselI[m, 2] BesselK[4, 2]) // FullSimplify]; (* Michael Somos, Dec 09 2014 *)
a[ n_] := With[{m = Abs[n + 4]}, If[ m < 5, {-10, 7, -3, 1, 0}[[m + 1]], (m - 1)! HypergeometricPFQ[ {5/2 - m/2, 3 - m/2}, {5, 1 - m, 5 - m}, 4] / 24]]; (* Michael Somos, Dec 09 2014 *)
nxt[{n_,a_,b_}]:={n+1,b,b(n+4)+a}; NestList[nxt,{1,0,1},20][[;;,2]] (* Harvey P. Dale, Jul 30 2024 *)
-
a(n)=round((besseli(n+4,-2)*(5*besselk(5,2)-besselk(6,2)) + besselk(n+4,2)*(5*besseli(5,2) + besseli(6,2))) / (besseli(6,2)*besselk(5,2) + besseli(5,2)*besselk(6,2))) \\ Charles R Greathouse IV, Sep 11 2014
-
m=30; v=concat([0,1], vector(m-2)); for(n=3, m, v[n]=(n+2)*v[n-1] +v[n-2]); v \\ G. C. Greubel, Nov 24 2018
-
def A058309(n):
if n < 2: return n
return factorial(n+3)*hypergeometric([1/2-n/2, 1-n/2], [5, -n-3, 1-n], 4)/24
[round(A058309(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 12 2014
-
@cached_function
def A058309(n):
if (n==0): return 0
elif (n==1): return 1
else: return (n+3)*A058309(n-1) + A058309(n-2)
[A058309(n) for n in range(30)] # G. C. Greubel, Nov 24 2018
A058308
a(n) = (n+2)*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 4, 21, 130, 931, 7578, 69133, 698908, 7757121, 93784360, 1226953801, 17271137574, 260294017411, 4181975416150, 71353876091961, 1288551745071448, 24553837032449473, 492365292394060908, 10364224977307728541, 228505314793164088810
Offset: 0
-
I:=[1,4]; [0] cat [n le 2 select I[n] else (n+2)*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 24 2018
-
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+(n+2)a[n-1]},a[n], {n,20}] (* Harvey P. Dale, May 21 2011 *)
FullSimplify[Table[(-4*BesselI[3+n,-2]*BesselK[4,2] + BesselI[3+n,-2]*BesselK[5,2] + 4*BesselI[4,2]*BesselK[3+n,2] + BesselI[5,2]*BesselK[3+n,2]) / (BesselI[5,2]*BesselK[4,2] + BesselI[4,2]*BesselK[5,2]),{n,0,20}]] (* Vaclav Kotesovec, Oct 05 2013 *)
-
m=30; v=concat([1,4], vector(m-2)); for(n=3, m, v[n]=(n+2)*v[n-1] +v[n-2]); concat([0], v) \\ G. C. Greubel, Nov 24 2018
-
def A058308(n):
if n < 2: return n
return factorial(n+2)*hypergeometric([1/2-n/2, 1-n/2], [4, -n-2, 1-n], 4)/6
[round(A058308(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 10 2014
-
@cached_function
def A058308(n):
if n==0: return 0
if n==1: return 1
return (n+2)*A058308(n-1) + A058308(n-2)
[A058308(n) for n in range(30)] # G. C. Greubel, Nov 24 2018
A102472
Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, ... Then S(0), S(1), S(2), ... are written vertically, next to each other, with the initial term of each on the next row down.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 43, 30, 13, 4, 1, 225, 157, 68, 21, 5, 1, 1393, 972, 421, 130, 31, 6, 1, 9976, 6961, 3015, 931, 222, 43, 7, 1, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1
Offset: 1
Triangle begins:
[1] 1;
[2] 1, 1;
[3] 3, 2, 1;
[4] 10, 7, 3, 1;
[5] 43, 30, 13, 4, 1;
[6] 225, 157, 68, 21, 5, 1;
[7] 1393, 972, 421, 130, 31, 6, 1;
[8] 9976, 6961, 3015, 931, 222, 43, 7, 1;
Mirror image of triangle in
A102473.
A102473
Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0,1,1,3,10,43,225,1393,9976,81201, ... Then S(0), S(1), S(2), ... are written next to each other, vertically, with the initial term of each on the next row down. The order of the terms in the rows are then reversed.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 10, 1, 4, 13, 30, 43, 1, 5, 21, 68, 157, 225, 1, 6, 31, 130, 421, 972, 1393, 1, 7, 43, 222, 931, 3015, 6961, 9976, 1, 8, 57, 350, 1807, 7578, 24541, 56660, 81201, 1, 9, 73, 520, 3193, 16485, 69133, 223884, 516901, 740785, 1, 10, 91, 738
Offset: 1
Russell Walsmith (russw(AT)lycos.com), Jan 09 2005
Triangle begins:
0
0 1
0 1 1
0 1 2 3
0 1 3 7 10
0 1 4 13 30 43
...
(the zeros are omitted).
Mirror image of triangle in
A102472.
-
a102473 n k = a102473_tabl !! (n-1) !! (k-1)
a102473_row n = a102473_tabl !! (n-1)
a102473_tabl = [1] : [1, 1] : f [1] [1, 1] 2 where
f us vs x = ws : f vs ws (x + 1) where
ws = 1 : zipWith (+) ([0] ++ us) (map (* x) vs)
-- Reinhard Zumkeller, Sep 14 2014
A062323
Triangle with a(n,n)=1, a(n,k)=(n-1)*a(n-1,k)+a(n-2,k) for n>k.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 7, 10, 7, 3, 1, 30, 43, 30, 13, 4, 1, 157, 225, 157, 68, 21, 5, 1, 972, 1393, 972, 421, 130, 31, 6, 1, 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1, 56660, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 516901, 740785, 516901, 223884
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 1, 1, 1;
[3] 2, 3, 2, 1;
[4] 7, 10, 7, 3, 1;
[5] 30, 43, 30, 13, 4, 1;
[6] 157, 225, 157, 68, 21, 5, 1;
[7] 972, 1393, 972, 421, 130, 31, 6, 1;
[8] 6961, 9976, 6961, 3015, 931, 222, 43, 7, 1;
-
a062323 n k = a062323_tabl !! n !! k
a062323_row n = a062323_tabl !! n
a062323_tabl = map fst $ iterate f ([1], [0,1]) where
f (us, vs) = (vs, ws) where
ws = (zipWith (+) (us ++ [0]) (map (* v) vs)) ++ [1]
where v = last (init vs) + 1
-- Reinhard Zumkeller, Mar 05 2013
Original entry on oeis.org
1, 2, 13, 130, 1807, 32280, 705421, 18237164, 544505521, 18438430990, 698246022001, 29239344782022, 1341545985079903, 66926098621724300, 3606825675219961657, 208826700420103831480, 12926842112341879416001, 851962999949978920707834, 59561112879709434549509941
Offset: 1
-
a247365 n = a102473 (2 * n - 1) n
-
seq(round(2*BesselI(n-1,2)*BesselK(2*n-1,2)), n=1..30); # Mark van Hoeij, Nov 08 2022
A001040 := proc(n) options remember;
if n < 2 then n else (n - 1)*procname(n-1) + procname(n-2) fi
end:
A001053 := proc(n) options remember;
if n < 2 then 1-n else (n - 1)*procname(n-1) + procname(n-2) fi
end:
seq( (-1)^n * (A001040(n-1) * A001053(2*n-1) - A001053(n-1) * A001040(2*n-1)), n=1..30); # Mark van Hoeij, Jul 10 2024
-
Table[DifferenceRoot[Function[{y,m},{y[2+m]==(m+n)y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
Showing 1-9 of 9 results.
Comments