A121954 Incorrect duplicate of A058307.
0, 1, 3, 13, 68, 420, 3015, 24541, 223884, 2263381, 25121075, 303716281, 3973432728, 55931774473, 842950049823, 13543132571641, 231076203767720, 4172914800390601
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = x + x^2 + 3*x^3 + 10*x^4 + 43*x^5 + 225*x^6 + 1393*x^7 + 9976*x^8 + ...
a001040 n = a001040_list !! n a001040_list = 0 : 1 : zipWith (+) a001040_list (zipWith (*) [1..] $ tail a001040_list) -- Reinhard Zumkeller, Mar 05 2013
a:=[1,1]; [0] cat [n le 2 select a[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..23]]; // Marius A. Burtea, Nov 19 2019
A001040 := proc(n) if n <= 1 then n; else (n-1)*procname(n-1)+procname(n-2) ; end if; end proc: # R. J. Mathar, Mar 13 2015
Table[Permanent[Array[KroneckerDelta[#1, #2]*(#1) + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n - 1, n - 1}]], {n, 2, 30}] (* John M. Campbell, Jul 08 2011 *) Join[{0},RecurrenceTable[{a[0]==1,a[1]==1,a[n]==n a[n-1]+a[n-2]}, a[n], {n,30}]] (* Harvey P. Dale, Aug 14 2011 *) FullSimplify[Table[2(-BesselI[n,-2]BesselK[0,2]+BesselI[0,2]BesselK[n,2]),{n,0,20}]] (* Vaclav Kotesovec, Jan 05 2013 *)
{a(n) = contfracpnqn( vector(abs(n), i, i))[1, 2]}; /* Michael Somos, Sep 25 2005 */
def A001040(n): if n < 2: return n return factorial(n-1)*hypergeometric([1-n/2,-n/2+1/2], [1,1-n,1-n], 4) [round(A001040(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 10 2014
G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 30*x^5 + 157*x^6 + 972*x^7 + 6961*x^8 + ... a(5) = 4*a(4) + a(3) = 4*7+2 = 30. See A058279 and A058307 for similar recurrences and e.g.f.s. - _Wolfdieter Lang_, May 19 2010
a:=[0,1];; for n in [3..25] do a[n]:=(n-1)*a[n-1]+a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Sep 20 2019
a001053 n = a001053_list !! n a001053_list = 1 : 0 : zipWith (+) a001053_list (zipWith (*) [1..] $ tail a001053_list) -- Reinhard Zumkeller, Nov 02 2011
I:=[0,1]; [1] cat [n le 2 select I[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..25]]; // G. C. Greubel, Sep 20 2019
a[0]:=1: a[1]:=0: for n from 2 to 23 do a[n]:=(n-1)*a[n-1]+a[n-2] od: seq(a[n],n=0..23); # Emeric Deutsch, Aug 16 2006
a[0]=1; a[1] =0; a[n_]:= (n-1)*a[n-1] + a[n-2]; Table[a[n], {n, 0, 21}] (* Robert G. Wilson v, Feb 24 2005 *) a[0] = 1; a[1] = 0; a[n_] := Permanent[SparseArray[{{i_, i_} :> i-1, Band[{2, 1}] -> 1, Band[{1, 2}] -> 1}, {n, n}]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* John M. Campbell, Jul 08 2011, updated by Jean-François Alcover, Nov 14 2016 *) RecurrenceTable[{a[0]==1,a[1]==0,a[n]==(n-1)a[n-1]+a[n-2]},a,{n,30}] (* Harvey P. Dale, Jan 31 2013 *) a[ n_] := With[ {m = Abs@n}, If[ m < 2, Boole[m == 0], Gamma[m] HypergeometricPFQ[{3/2 - m/2, 1 - m/2}, {2, 2 - m, 1 - m}, 4]]]; (* Michael Somos, Nov 30 2018 *)
{a(n) = contfracpnqn(vector(abs(n), i, i))[2, 2]}; /* Michael Somos, Sep 25 2005 */
def A001053(n): if n < 3: return 1 if n != 1 else 0 return gamma(n)*hypergeometric([3/2-n/2,1-n/2], [2,2-n,1-n], 4) [round(A001053(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 11 2014
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
[0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *) nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
def A058798(n): if n < 3: return n return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n) [simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
1, 1 - x, -1 + 2*x - 2*x^2, 1 - 4*x + 6*x^2 - 6*x^3, ...
CoefficientList[ #, x ]&/@Numerator[ FoldList[ (1/#1-x#2)&, 1, Range[ 12 ] ]//Together ] FoldList[(1/#1-x#2)&, 1, Range[4] ]//Together (a simpler version, which shows the rational functions)
Triangle begins: 1; 1, 1, 1; 1, 2, 3, 2, 1; 1, 3, 7, 10, 7, 3, 1; ...
a058294 n k = a058294_tabf !! (n-1) !! (k-1) a058294_row n = a058294_tabf !! (n-1) a058294_tabf = [1] : zipWith (++) xss (map (tail . reverse) xss) where xss = tail a102473_tabl -- Reinhard Zumkeller, Sep 14 2014
t[n_, n_] = 1; t[n_, k_] := t[n, k] = If[nJean-François Alcover, Oct 05 2016 *)
a:=[1,2];; for n in [3..30] do a[n]:=(n-1)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Feb 23 2019
I:=[1,2]; [n le 2 select I[n] else (n-1)*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 23 2019
a[1]= 1; a[2]= 2; a[n_]:= a[n] = (n-1)*a[n-1]+a[n-2]; Table[a[n], {n,20}] (* Robert G. Wilson v, Feb 14 2005 *) RecurrenceTable[{a[1]==1,a[2]==2,a[n+1]==n*a[n]+a[n-1]},a,{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
a(n)=sum(k=0,n,k!*binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
[sum(factorial(k)*binomial(floor((n+k-1)/2), k)*binomial(floor((n+k)/2), k) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 23 2019
[n le 2 select 1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // Vincenzo Librandi, May 06 2013
A058279 := proc(n) option remember; if n <= 1 then 1 else A058279(n-2)+(n+1)*A058279(n-1); fi; end;
RecurrenceTable[{a[0] == a[1] == 1, a[n] == a[n-2] + a[n-1] (n+1)}, a, {n, 30}] (* Vincenzo Librandi, May 06 2013 *)
I:=[1,4]; [0] cat [n le 2 select I[n] else (n+2)*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 24 2018
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+(n+2)a[n-1]},a[n], {n,20}] (* Harvey P. Dale, May 21 2011 *) FullSimplify[Table[(-4*BesselI[3+n,-2]*BesselK[4,2] + BesselI[3+n,-2]*BesselK[5,2] + 4*BesselI[4,2]*BesselK[3+n,2] + BesselI[5,2]*BesselK[3+n,2]) / (BesselI[5,2]*BesselK[4,2] + BesselI[4,2]*BesselK[5,2]),{n,0,20}]] (* Vaclav Kotesovec, Oct 05 2013 *)
m=30; v=concat([1,4], vector(m-2)); for(n=3, m, v[n]=(n+2)*v[n-1] +v[n-2]); concat([0], v) \\ G. C. Greubel, Nov 24 2018
def A058308(n): if n < 2: return n return factorial(n+2)*hypergeometric([1/2-n/2, 1-n/2], [4, -n-2, 1-n], 4)/6 [round(A058308(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 10 2014
@cached_function def A058308(n): if n==0: return 0 if n==1: return 1 return (n+2)*A058308(n-1) + A058308(n-2) [A058308(n) for n in range(30)] # G. C. Greubel, Nov 24 2018
From _Wolfdieter Lang_, Mar 08 2013: (Start) a(4) = 4*a(3) + 3*a(2) = 4*18 + 3*5 = 87. Morse code: a(4) = 87 from the sum of all 5 labeled codes on [1,2,3,4], one with no dash, three with one dash and one with two dashes: 4! + (3*4 + 1*4 + 1*2)*(3) + (3)^2 = 87. (End)
a213190 n = a213190_list !! n a213190_list = 1 : 1 : zipWith (+) (zipWith (*) [2..] $ tail a213190_list) (map (* 3) a213190_list) -- Reinhard Zumkeller, Feb 20 2015
A:=(n,x)->sum((n-k-2)!*binomial(n-k,k+2)*x^(k+1)/k!,k=0..floor(n/2+1)) B:=(n,x)->sum(n-k)!*binomial(n-k-1,k)*x^k/(k+1)!,k=0..floor((n+1)/2)) seq(A(n,3)+B(n,3), n=2..20)
RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n*a[n - 1] + 3 a[n - 2]}, a[n], {n, 50}] (* G. C. Greubel, Aug 16 2017 *)
a(n) = sum(k=0, n\2, ((n-k)!/k!)*binomial(n-k,k)*3^k); /* Joerg Arndt, Mar 07 2013 */
Comments