cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001037 Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0

Views

Author

Keywords

Comments

Also dimensions of free Lie algebras - see A059966, which is essentially the same sequence.
This sequence also represents the number N of cycles of length L in a digraph under x^2 seen modulo a Mersenne prime M_q=2^q-1. This number does not depend on q and L is any divisor of q-1. See Theorem 5 and Corollary 3 of the Shallit and Vasiga paper: N=sum(eulerphi(d)/order(d,2)) where d is a divisor of 2^(q-1)-1 such that order(d,2)=L. - Tony Reix, Nov 17 2005
Except for a(0) = 1, Bau-Sen Du's [1985/2007] Table 1, p. 6, has this sequence as the 7th (rightmost) column. Other columns of the table include (but are not identified as) A006206-A006208. - Jonathan Vos Post, Jun 18 2007
"Number of binary Lyndon words" means: number of binary strings inequivalent modulo rotation (cyclic permutation) of the digits and not having a period smaller than n. This provides a link to A103314, since these strings correspond to the inequivalent zero-sum subsets of U_m (m-th roots of unity) obtained by taking the union of U_n (n|m) with 0 or more U_d (n | d, d | m) multiplied by some power of exp(i 2Pi/n) to make them mutually disjoint. (But not all zero-sum subsets of U_m are of that form.) - M. F. Hasler, Jan 14 2007
Also the number of dynamical cycles of period n of a threshold Boolean automata network which is a quasi-minimal positive circuit of size a multiple of n and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Feb 25 2009
Also, the number of periodic points with (minimal) period n in the iteration of the tent map f(x):=2min{x,1-x} on the unit interval. - Pietro Majer, Sep 22 2009
Number of distinct cycles of minimal period n in a shift dynamical system associated with a totally disconnected hyperbolic iterated function system (see Barnsley link). - Michel Marcus, Oct 06 2013
From Jean-Christophe Hervé, Oct 26 2014: (Start)
For n > 0, a(n) is also the number of orbits of size n of the transform associated to the Kolakoski sequence A000002 (and this is true for any map with 2^n periodic points of period n). The Kolakoski transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the periodic points of the orbit of size 2. A027375(n) = n*a(n) gives the number of periodic points of minimal period n.
For n > 1, this sequence is equal to A059966 and to A060477, and for n = 1, a(1) = A059966(1)+1 = A060477(1)-1; this because the n-th term of all 3 sequences is equal to (1/n)*sum_{d|n} mu(n/d)*(2^d+e), with e = -1/0/1 for resp. A059966/this sequence/A060477, and sum_{d|n} mu(n/d) equals 1 for n = 1 and 0 for all n > 1. (End)
Warning: A000031 and A001037 are easily confused, since they have similar formulas.
From Petros Hadjicostas, Jul 14 2020: (Start)
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) = A001221(N) being the number of distinct primes of N).
For N = 3, a = phi(3)/2 + omega(3) = 2/2 + 1 = 2 and b = omega(3) - 1 = 0. It follows that D(w, N=3) = A000079(w) = 2^w.
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 3, we get that c(w, N=3) = A000079(w)/w = 2^w/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 3, we saw that a = 2 and b = 0, and hence d*(w, N=3) = a(w) = Sum_{k | w} (mu(k)/k) * 2^(w/k) / (w/k) = (1/w) * Sum_{k | w} mu(k) * 2^(w/k) for w >= 1. See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Examples

			Binary strings (Lyndon words, cf. A102659):
a(0) = 1 = #{ "" },
a(1) = 2 = #{ "0", "1" },
a(2) = 1 = #{ "01" },
a(3) = 2 = #{ "001", "011" },
a(4) = 3 = #{ "0001", "0011", "0111" },
a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
		

References

  • Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
  • P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
  • Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A074650.
Row sums of A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Euler transform is A000079.
See A058943 and A102569 for initial terms. See also A058947, A011260, A059966.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Cf. A000031 (n-bead necklaces but may have period dividing n), A014580, A046211, A046209, A006206-A006208, A038063, A060477, A103314.
See also A102659 for the list of binary Lyndon words themselves.

Programs

  • Haskell
    a001037 0 = 1
    a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $
                           a027750_row n) `div` n
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
  • PARI
    A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
    
  • PARI
    {a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
    
  • PARI
    a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017

Formula

For n >= 1:
a(n) = (1/n)*Sum_{d | n} mu(n/d)*2^d.
A000031(n) = Sum_{d | n} a(d).
2^n = Sum_{d | n} d*a(d).
a(n) = A027375(n)/n.
a(n) = A000048(n) + A051841(n).
For n > 1, a(n) = A059966(n) = A060477(n).
G.f.: 1 - Sum_{n >= 1} moebius(n)*log(1 - 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
From Richard L. Ollerton, May 10 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 11 2021

Extensions

Revised by N. J. A. Sloane, Jun 10 2012

A058943 Coefficients of irreducible polynomials over GF(2) listed in lexicographic order.

Original entry on oeis.org

10, 11, 111, 1011, 1101, 10011, 11001, 11111, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1001001, 1010111, 1011011, 1100001, 1100111, 1101101, 1110011, 1110101, 10000011, 10001001, 10001111, 10010001
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 11.

Examples

			The first few are x, x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 553-555.

Crossrefs

Converted to decimal: A014580.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): this sequence, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    Do[a = Reverse[ IntegerDigits[n, 2]]; b = {0}; l = Length[a]; k = 1; While[k < l + 1, b = Append[b, a[[k]]*x^(k - 1) ]; k++ ]; b = Apply[Plus, b]; c = Factor[b, Modulus -> 2]; If[b == c, Print[ FromDigits[ IntegerDigits[n, 2]]]], {n, 3, 250, 2} ]
  • PARI
    seq(N, p=2, maxdeg=oo) = {
      my(a = List(), k=0, d=0);
      while (d++ <= maxdeg,
        for (n=p^d, 2*p^d-1, my(f=Mod(Pol(digits(n,p)),p));
          if(polisirreducible(f), listput(a, subst(lift(f),'x,10)); k++);
          if(k >= N, break(2))));
      Vec(a);
    };
    seq(27) \\ Gheorghe Coserea, May 28 2018

A058947 Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order.

Original entry on oeis.org

11, 111, 1011, 1101, 10011, 11001, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1011011, 1100001, 1100111, 1101101, 1110011, 10000011, 10001001, 10001111, 10010001, 10011101, 10100111, 10101011
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 11.

Examples

			The first few are x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
		

Crossrefs

Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946.
Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
a(n) = A007088(A091250(n)).

Programs

  • Mathematica
    car = 2; maxDegree = 13;
    okQ[{1, 1}] = True;
    okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
    FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 09 2019 *)

A058944 Coefficients of monic irreducible polynomials over GF(3) listed in lexicographic order.

Original entry on oeis.org

10, 11, 12, 101, 112, 122, 1021, 1022, 1102, 1112, 1121, 1201, 1211, 1222, 10012, 10022, 10102, 10111, 10121, 10202, 11002, 11021, 11101, 11111, 11122, 11222, 12002, 12011, 12101, 12112, 12121, 12212, 100021, 100022, 100112, 100211
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Examples

			The first few are x, x+1, x+2; x^2+1, x^2+x+2, x^2+2x+2; ... Note that x is irreducible but not primitive.
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 555-557.

Crossrefs

Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, this sequence, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Maple
    N:= 100: # to get the first N terms
    count:= 0:
    for d from 1 while count < N do
    for nn from 0 to 3^d-1 while count < N do
      L:= convert(nn,base,3);
      P:= add(L[i]*x^(i-1),i=1..nops(L))+x^d;
      if Irreduc(P) mod 3 then
         count:= count+1;
         A[count]:= add(L[i]*10^(i-1),i=1..nops(L))+10^d;
      fi
      od
    od:
    seq(A[i],i=1..N); # Robert Israel, Jul 06 2016
  • Mathematica
    A058944 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 3]]; b = {0}; la = Length[a]; k = 1; While[k < la+1, b = Append[ b, a[[k]]*x^(k-1)]; k++]; b = Plus @@ b; c = Factor[ b, Modulus -> 3]; id = IntegerDigits[n, 3]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id] ] ], {n, 3, 300}]][[2, 1]]](* Jean-François Alcover, Feb 13 2012, after A058943 *)

Extensions

More terms from David Wasserman, May 23 2002

A058946 Coefficients of monic irreducible polynomials over GF(7) listed in lexicographic order.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 101, 102, 104, 113, 114, 116, 122, 123, 125, 131, 135, 136, 141, 145, 146, 152, 153, 155, 163, 164, 166, 1002, 1003, 1004, 1005, 1011, 1016, 1021, 1026, 1032, 1035, 1041, 1046, 1052, 1055, 1062, 1065, 1101, 1103, 1112, 1115
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 3.

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 560-562.

Crossrefs

Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, this sequence. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    A058946 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 7]]; b = {0}; la = Length[a]; k = 1; While[k < la + 1, b = Append[b, a[[k]]*x^(k - 1)]; k++]; b = Plus @@ b; c = Factor[b, Modulus -> 7]; id = IntegerDigits[n, 7]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id]]], {n, 7, 450}]][[2, 1]]](* Jean-François Alcover, Feb 13 2012, after A058943 *)

Extensions

More terms from David Wasserman, May 23 2002

A059886 a(n) = |{m : multiplicative order of 4 mod m=n}|.

Original entry on oeis.org

2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) is the number of orders of degree-n monic irreducible polynomials over GF(4).
Also, number of primitive factors of 4^n - 1. - Max Alekseyev, May 03 2022

Examples

			a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
		

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), this sequence (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=4 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(4^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A058945 Coefficients of monic irreducible polynomials over GF(5) listed in lexicographic order.

Original entry on oeis.org

10, 11, 12, 13, 14, 102, 103, 111, 112, 123, 124, 133, 134, 141, 142, 1011, 1014, 1021, 1024, 1032, 1033, 1042, 1043, 1101, 1102, 1113, 1114, 1131, 1134, 1141, 1143, 1201, 1203, 1213, 1214, 1222, 1223, 1242, 1244, 1302, 1304, 1311, 1312, 1322, 1323, 1341
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 5.

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 557-560.

Crossrefs

Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, this sequence, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    A058945 = Union[ Reap[ Do[ a = Reverse[ IntegerDigits[n, 5]]; b = {0}; la = Length[a]; k = 1; While[k < la + 1, b = Append[b, a[[k]]*x^(k - 1)]; k++]; b = Plus @@ b; c = Factor[b, Modulus -> 5]; id = IntegerDigits[n, 5]; If[b == c && (id == {1, 0} || id[[-1]] != 0), Sow[ FromDigits[id] ] ], {n, 5, 300}]][[2, 1]]](* Jean-François Alcover, Feb 13 2012, after A058943 *)

Extensions

More terms from David Wasserman, May 23 2002

A058952 Coefficients of monic primitive irreducible polynomials over GF(4) listed in lexicographic order.

Original entry on oeis.org

12, 13, 112, 113, 122, 133, 1112, 1113, 1123, 1132, 1213, 1222, 1232, 1233, 1312, 1322, 1323, 1333, 10123, 10132, 10222, 10223, 10233, 10322, 10332, 10333, 11012, 11013, 11102, 11103, 11122, 11133, 11203, 11222, 11302, 11333, 12013, 12022, 12032, 12123, 12203
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

The elements of GF(4) are labeled {0,1,2,3}.

References

  • D. H. Green and I. S. Taylor, Irreducible polynomials over composite Galois fields and their applications in coding techniques, Proc. IEE, 121 (1974), 935-939.

Crossrefs

Cf. A058948.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Extensions

Green and Taylor's table extends through degree 5.
a(10)-a(41) from Nathaniel Johnston, May 09 2011

A058949 Coefficients of monic primitive irreducible polynomials over GF(3) listed in lexicographic order.

Original entry on oeis.org

11, 112, 122, 1021, 1121, 1201, 1211, 10012, 10022, 11002, 11122, 11222, 12002, 12112, 12212, 100021, 100211, 101011, 101201, 101221, 102101, 102211, 110021, 110101, 110111, 111011, 111121, 111211, 112001, 112111, 112201, 120001, 120011
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 7.

Examples

			The first few are x+1; x^2+x+2, x^2+2x+2; ...
		

Crossrefs

Cf. A058944.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    car = 3; maxDegree = 8;
    okQ[{1, 1}] = True;
    okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
    FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 09 2019 *)

Extensions

More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006

A058950 Coefficients of monic primitive irreducible polynomials over GF(5) listed in lexicographic order.

Original entry on oeis.org

12, 13, 112, 123, 133, 142, 1032, 1033, 1042, 1043, 1102, 1113, 1143, 1203, 1213, 1222, 1223, 1242, 1302, 1312, 1322, 1323, 1343, 1403, 1412, 1442, 10122, 10123, 10132, 10133, 10412, 10413, 10442, 10443, 11013, 11023, 11032, 11042, 11113
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Crossrefs

Cf. A058945.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    car = 5; maxDegree = 5;
    okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs] - 1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
    FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 10 2019 *)

Extensions

More terms from Jean Gaumont (jeangaum87(AT)yahoo.com), Apr 16 2006
Showing 1-10 of 11 results. Next