cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A191469 Numbers n such that 7^n - 6 is prime.

Original entry on oeis.org

2, 3, 6, 9, 21, 25, 33, 49, 54, 133, 245, 255, 318, 1023, 1486, 3334, 6821, 8555, 11605, 42502, 44409, 90291, 92511, 140303
Offset: 1

Views

Author

Vincenzo Librandi, Jun 06 2011

Keywords

Comments

a(14)=1023 and a(15)=1486 correspond to BPSW strong probable primes (passing PARI's ispseudoprime()). - Joerg Arndt, Jun 06 2011
a(25) > 2*10^5. - Robert Price, Nov 14 2014

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| IsPrime(7^n-6)]
    
  • Maple
    A191469:=n->`if`(isprime(7^n-6),n,NULL): seq(A191469(n), n=1..10^3); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[1,5000],PrimeQ[7^#-6]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    for(n=1, 10^6, if(isprime(7^n-6), print1(n, ", ")))

Extensions

a(17)-a(23) from Robert Price, Jan 24 2014
a(24) from Robert Price, Nov 14 2014

A135535 Primes of the form 4^k - 3.

Original entry on oeis.org

13, 61, 1021, 4093, 16381, 1048573, 4194301, 16777213, 19807040628566084398385987581, 83076749736557242056487941267521533, 5316911983139663491615228241121378301, 1427247692705959881058285969449495136382746621, 23945242826029513411849172299223580994042798784118781, 118571099379011784113736688648896417641748464297615937576404566024103044751294461, 139984046386112763159840142535527767382602843577165595931249318810236991948760059086304843329475444733
Offset: 1

Views

Author

Daniele Corradetti (d.corradetti(AT)gmail.com), Feb 21 2008

Keywords

Comments

Involved in the "New Mersenne Prime Conjecture" and in some generalizations of Mersenne primes.
Subsequence of A050415. - Elmo R. Oliveira, Nov 28 2023

Examples

			16381 is a term because 4^7 - 3 = 16381 is prime.
		

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (pp. 114-134).

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[4^n - 3], Print[4^n - 3]], {n, 100}] (* Robert G. Wilson v, Feb 29 2008 *)
    Select[4^Range[200]-3,PrimeQ] (* Harvey P. Dale, Jul 11 2022 *)

Formula

a(n) = 4^A059266(n) - 3. - Ryan Propper, Feb 26 2008

Extensions

More terms from R. J. Mathar, Robert G. Wilson v and Ryan Propper, Feb 26 2008

A164783 a(n) = 7^n-6.

Original entry on oeis.org

1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers.

References

  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Programs

Formula

a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - Vincenzo Librandi, Feb 06 2013
a(n) = A000420(n) - 6 for n>0. - Michel Marcus, Aug 31 2013

Extensions

More terms a(8)-a(19) from Vincenzo Librandi, Oct 29 2009

A164784 a(n) = 6^n-5.

Original entry on oeis.org

1, 31, 211, 1291, 7771, 46651, 279931, 1679611, 10077691, 60466171, 362797051, 2176782331, 13060694011, 78364164091, 470184984571, 2821109907451, 16926659444731, 101559956668411, 609359740010491, 3656158440062971
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Programs

  • Magma
    [6^n-5: n in [1..30]]; // Vincenzo Librandi, Feb 06 2013
  • Mathematica
    CoefficientList[Series[(1 + 24 x)/(1 - 7 x + 6 x^2), {x, 0, 30}],x] (* Vincenzo Librandi, Feb 06 2013 *)

Formula

a(n) = 6*a(n-1)+25 with n>1, a(1)=1. - Vincenzo Librandi, Oct 29 2009
G.f.: x*(1 + 24*x)/(1 - 7*x + 6*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 4 + (exp(5*x) - 5)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

A164785 a(n) = 5^n - 4.

Original entry on oeis.org

1, 21, 121, 621, 3121, 15621, 78121, 390621, 1953121, 9765621, 48828121, 244140621, 1220703121, 6103515621, 30517578121, 152587890621, 762939453121, 3814697265621, 19073486328121, 95367431640621, 476837158203121
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Cf. A059613.

Programs

Formula

a(n) = 5*a(n-1) + 16 with n > 1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
a(n) = 6*a(n-1) - 5*a(n-2); a(1)=1, a(2)=21. - Harvey P. Dale, Jun 07 2012
G.f.: x*(1 + 15*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Feb 06 2013
E.g.f.: 3 + (exp(4*x) - 4)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

Extensions

More terms a(9)-a(21) from Vincenzo Librandi, Oct 29 2009

A164786 a(n) = 8^n-7.

Original entry on oeis.org

1, 57, 505, 4089, 32761, 262137, 2097145, 16777209, 134217721, 1073741817, 8589934585, 68719476729, 549755813881, 4398046511097, 35184372088825, 281474976710649, 2251799813685241, 18014398509481977, 144115188075855865
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783.

References

  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Programs

  • Magma
    [8^n-7: n in [1..20]]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    8^Range[20]-7 (* or *) LinearRecurrence[{9,-8},{1,57},20] (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = 8*a(n-1)+49, with a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+48*x)/(1-9*x+8*x^2). a(n) = 9*a(n-1)-8*a(n-2). - Colin Barker, Jan 28 2012
E.g.f.: 6 + (exp(7*x) - 7)*exp(x). - Ilya Gutkovskiy, Jun 11 2016

Extensions

More terms a(7)-a(19) from Vincenzo Librandi, Oct 29 2009

A217349 Numbers k such that 4^k + 7 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 19, 22, 39, 44, 49, 63, 80, 87, 102, 107, 294, 305, 399, 463, 595, 599, 903, 944, 1324, 1727, 1755, 1932, 1935, 4485, 6165, 6665, 9438, 11169, 19859, 27503, 55392, 86235, 98217, 117855, 123640, 134204, 139660, 150437, 157634, 186475, 236129, 283248, 390142, 410178
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

The next terms are > 4.1*10^5. - Elmo R. Oliveira, Nov 29 2023

Examples

			For k = 14, 4^14 + 7 = 268435463 is prime.
		

Crossrefs

Cf. A057195, A059266, A089437, A104066 (associated primes).

Programs

  • Mathematica
    Select[Range[0, 5000], PrimeQ[4^# + 7] &]
  • PARI
    is(n)=ispseudoprime(4^n+7) \\ Charles R Greathouse IV, Jun 06 2017

Formula

a(n) = A057195(n)/2.

Extensions

Extended using A057195 terms by Michel Marcus, Aug 28 2015
a(51)-a(54) derived from A057195 by Elmo R. Oliveira, Nov 29 2023

A217353 Numbers k such that 8^k - 3 is prime.

Original entry on oeis.org

1, 2, 3, 4, 8, 50, 58, 71, 112, 1079, 1318, 2252, 3524, 4800, 5560, 6919, 11484, 12184, 41099, 94711, 375460, 449248
Offset: 1

Views

Author

Vincenzo Librandi, Oct 02 2012

Keywords

Comments

3*A217353 is a subsequence of A050414. - Bruno Berselli, Oct 02 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[8^# - 3] &]
  • PARI
    is(n)=ispseudoprime(8^n-3) \\ Charles R Greathouse IV, May 22 2017

Extensions

a(15)-a(17), a(19)-a(20) using A050414 by Bruno Berselli, Oct 02 2012
a(18), a(21)-a(22) using A050414 by Michael S. Branicky, Sep 15 2024

A217348 Numbers k such that 4^k - 5 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 10, 13, 16, 18, 28, 33, 59, 65, 75, 83, 103, 113, 275, 353, 405, 568, 614, 909, 1184, 1200, 1564, 2266, 2556, 4246, 8014, 8193, 8696, 9291, 10993, 12146, 13809, 15459, 16381, 24106, 60220, 91816, 158070, 182491, 207016, 266675, 297561
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Examples

			28 is a term because 4^28 - 5 = 72057594037927931 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[4^# - 5] &]
  • PARI
    /* Up to 620 the code produces in few seconds the first terms: */
    allocatemem(10000000); for(n=2, 620, if(isprime(4^n-5), print1(n", ")));

Formula

a(n) = A059608(n+1)/2. - Daniel Starodubtsev, Mar 20 2020

Extensions

a(31)-a(34) from Bruno Berselli, Oct 02 2012
a(35)-a(45) from Daniel Starodubtsev, Mar 20 2020
a(46)-a(47) derived from A059608 by Elmo R. Oliveira, Nov 28 2023

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
Showing 1-10 of 10 results.