cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A060213 Lesser of twin primes whose average is 6 times a prime.

Original entry on oeis.org

11, 17, 29, 41, 101, 137, 281, 617, 641, 821, 1697, 1877, 2081, 2237, 2381, 2657, 2801, 3461, 3557, 3917, 4637, 4721, 5441, 6197, 6701, 8537, 8597, 9677, 10937, 12161, 12377, 12821, 12917, 13217, 13721, 13757, 13997, 14081, 16061, 17417
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Lowest factor-density among all positive consecutive integer triples; for p > 41, last digit of p can be only 1 or 7 (see Alexandrov link, p. 15). - Lubomir Alexandrov, Nov 25 2001

Examples

			102197 is here because 102198 = 17033*6 and 17033 is prime.
		

Crossrefs

Programs

  • Maple
    map(t -> 6*t-1, select(p -> isprime(p) and isprime(6*p-1) and isprime(6*p+1), [2,seq(i,i=3..10000,2)]));
  • Mathematica
    Transpose[Select[Partition[Prime[Range[2500]],2,1],#[[2]]-#[[1]] == 2 && PrimeQ[Mean[#]/6]&]][[1]] (* Harvey P. Dale, May 04 2014 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 6) && isprime((n+1)/6); \\ Michel Marcus, Dec 14 2013

Formula

a(n) = 6 * A060212(n) - 1. - Sean A. Irvine, Oct 31 2022

Extensions

Offset changed to 1 by Michel Marcus, Dec 14 2013

A294731 Smallest average of a twin prime pair divisible by the n-th prime, i.e. A090530(n), divided by 6*prime(n).

Original entry on oeis.org

1, 1, 3, 4, 1, 2, 1, 2, 7, 9, 5, 4, 1, 20, 3, 43, 4, 3, 14, 22, 9, 8, 19, 7, 1, 1, 8, 4, 24, 5, 1, 2, 2, 13, 4, 6, 5, 9, 22, 3, 15, 6, 11, 3, 7, 5, 20, 5, 6, 7, 3, 3, 9, 14, 10, 2, 35, 2, 1, 10, 25, 17, 1, 35, 5, 4, 1, 18, 15, 12, 25, 1, 2, 5
Offset: 3

Views

Author

Hugo Pfoertner, Nov 09 2017

Keywords

Comments

The sequence starts at n=3, because A090530(1)=4 is not divisible by 6*2 and A090530(2)=6 is not divisible by 6*3.
The positions of ones in the sequence are given by A060212, i.e. a(A000720(A060212(n)))=1 for all n>=3.

Examples

			a(5)=3 because 198 is the smallest average of a twin prime pair {197,199} that is divisible by the 5th prime 11: 3 = 198 / (6*11).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], k = 1}, While[! PrimeQ[6*k*p - 1] || ! PrimeQ[6*k*p + 1], k++]; k]; Array[a, 100, 3] (* Amiram Eldar, Aug 25 2025 *)

Formula

a(n) = A090530(n) / ( 6 * prime(n) ) for n >= 3.
a(n) = A071407(n) / 6. - Amiram Eldar, Aug 25 2025

A283562 Primes of the form (p^2 - q^2) / 24 with primes p > q > 3.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 37, 43, 47, 53, 67, 73, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 223, 233, 257, 263, 277, 283, 293, 313, 337, 347, 353, 373, 397, 433, 443, 467, 487, 523, 547, 563, 577, 593, 607, 613, 617, 643, 647, 653, 733, 743, 757, 773, 787, 797, 887, 907, 937, 947, 953, 977
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Mar 11 2017

Keywords

Comments

Note that p - q must be <= 12. Also note that there can be corresponding prime pairs (q, p) more than one way, i.e., (7, 13), (13, 17), (29, 31): (13^2 - 7^2)/24 = (17^2 - 13^2)/24 = (31^2 - 29^2)/24 = 5.
There are no terms of A045468 > 11.
Union of {2}, A006489, A060212, A092110, and A125272. - Robert Israel, Mar 13 2017

Examples

			3 is a term since (11^2 - 7^2)/24 = 3 and 3, 7, 11 are prime numbers.
		

Crossrefs

Programs

  • Maple
    select(r -> isprime(r) and ((isprime(3*r+2) and isprime(3*r-2))
      or (isprime(6*r+1) and isprime(6*r-1))
      or (isprime(2*r+3) and isprime(2*r-3))
    or (isprime(r+6) and isprime(r-6))), [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 13 2017
  • Mathematica
    ok[n_] := PrimeQ[n] && Block[{p, q, s = Reduce[p^2-q^2 == 24 n && p>3 && q>3, {p, q}, Integers]}, If[s === {}, False, Or @@ And @@@ PrimeQ[{p, q} /. List@ ToRules@s]]]; Select[Range@1000, ok] (* Giovanni Resta, Mar 11 2017 *)
  • PARI
    isA124865(n) = if(n%24, isprimepower(n+4)==2 || isprimepower(n+9)==2, fordiv(n/4, d, if(isprime(n/d/4+d) && isprime(n/d/4-d), return(1))); 0)
    lista(nn) = forprime(p=2, nn, if(isA124865(24*p), print1(p", ")))

Formula

For n > 5, a(n) == {3,7} mod 10.

A089151 Primes p such that 6*p - 7 and 6*p - 5 are twin primes.

Original entry on oeis.org

2, 3, 11, 13, 19, 31, 41, 53, 59, 71, 73, 101, 139, 173, 193, 239, 269, 271, 313, 349, 353, 379, 433, 449, 521, 563, 613, 643, 683, 823, 829, 881, 941, 1051, 1061, 1093, 1223, 1249, 1259, 1373, 1399, 1439, 1471, 1571, 1621, 1669, 1723, 1811, 1861, 1951, 1973
Offset: 1

Views

Author

Pierre CAMI, Dec 06 2003

Keywords

Examples

			6*19 - 7 = 107, 6*19 - 5 = 109; 107 and 109 are twin primes.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000000)| IsPrime(6*p-5) and IsPrime(6*p-7)] // Vincenzo Librandi, Nov 16 2010
  • Mathematica
    Select[Range[2, 2000], And @@ PrimeQ[{#, 6#-5, 6#-7}] &] (* Amiram Eldar, Jan 15 2020 *)
    Select[Prime[Range[300]],AllTrue[6#-{5,7},PrimeQ]&] (* Harvey P. Dale, Nov 18 2022 *)

A182521 Numbers n such that A182481(n)=1 and there is not a representation n=d_1*d_2 with d_2>1, such that A182481(d_1)=d_2.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 17, 23, 25, 45, 47, 77, 87, 95, 103, 107, 137, 143, 175, 215, 247, 283, 287, 313, 347, 355, 373, 385, 397, 425, 443, 455, 467, 565, 577, 593, 637, 653, 667, 703, 737, 773, 775, 787, 850, 907, 913, 917, 943, 975, 1033, 1075, 1117, 1127, 1130
Offset: 1

Views

Author

Vladimir Shevelev, May 03 2012

Keywords

Comments

Or the numbers n such that 6*n-1 is lesser of twin primes which occurs in A182482 only once.
All terms of A060212 are in the sequence.

Crossrefs

Formula

Numbers n for which A182483(A182513(n))/n = A182481(n) = 1.

Extensions

Insert 1 and more terms from Ray Chandler, Sep 18 2019

A126655 Numbers n such that 6*p(n)-1 and 6*p(n)+1 are twin primes and 6*p(n+1)-1 and 6*p(n+1)+1 are also twin primes with p(n) = n-th prime.

Original entry on oeis.org

1, 2, 3, 27, 137, 340, 479, 882, 1415, 1883, 3442, 3798, 4284, 5827, 7559, 8783, 9453, 10355, 10731, 11388, 12565, 13613, 16477, 17007, 18402, 18665, 19450, 19633, 22306, 24971, 25083, 29108, 29861, 30748, 31694, 32622, 33097, 36743, 37141
Offset: 1

Views

Author

Pierre CAMI, Feb 09 2007

Keywords

Examples

			6*2-1=11 6*2+1=13 11 13 twin primes as 17 and 19 so 1 is first term of the sequence
6*3-1=17 6*3+1=19 17 19 twin primes as 29 and 31 so 2 is second term of the sequence
6*5-1=29 6*5+1=31 29 and 31 twin primes 5=3rd prime
6*7-1=41 6*7+1=43 41 and 43 twin primes 7=4th prime so 3 is the 3rd term of the sequence
		

Crossrefs

Cf. A060212.

Programs

  • Mathematica
    Select[Range[39000], PrimeQ[6*Prime[ # ] - 1] && PrimeQ[6*Prime[ # ] + 1] && PrimeQ[6*Prime[ # + 1] - 1] && PrimeQ[6*Prime[ # + 1] + 1] &] (* Ray Chandler, Feb 11 2007 *)
    Select[Range[40000],AllTrue[Flatten[{6*Prime[#]+{1,-1},6*Prime[#+1]+{1,-1}}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 27 2015 *)

Extensions

Corrected and extended by Ray Chandler, Feb 11 2007

A164570 Primes p such that 8*p-3 and 8*p+3 are also prime numbers.

Original entry on oeis.org

2, 5, 7, 13, 47, 103, 107, 127, 163, 233, 293, 337, 383, 433, 443, 467, 503, 673, 677, 733, 797, 877, 1087, 1093, 1153, 1217, 1223, 1307, 1637, 1933, 2053, 2087, 2137, 2423, 2477, 2543, 2633, 2687, 2857, 2917, 3163, 3373, 3407, 3467, 3767, 3793, 3877
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A023229. [R. J. Mathar, Aug 26 2009]
Primes of the form A087695(k)/8. [R. J. Mathar, Aug 26 2009]

Examples

			For p=2, 8*2-3=13 and 8*2+3=19 are prime numbers, which adds p=2 to the sequence
For p=5, 8*5-3=37 and 8*5+3=43 are prime numbers, which adds p=5 to the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime(8*p-3) and IsPrime(8*p+3)]; // Vincenzo Librandi, Apr 09 2013
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[8*p-3]&&PrimeQ[8*p+3],AppendTo[lst,p]], {n,7!}];lst
    Select[Prime[Range[1000]], And@@PrimeQ/@{8 # + 3, 8 # - 3}&] (* Vincenzo Librandi, Apr 09 2013 *)
    Select[Prime[Range[1000]],AllTrue[8#+{3,-3},PrimeQ]&] (* Harvey P. Dale, May 05 2023 *)

Extensions

Comments turned into examples by R. J. Mathar, Aug 26 2009

A171179 Numbers that are divisible by exactly 3 primes (counted with multiplicity) and sandwiched between primes.

Original entry on oeis.org

12, 18, 30, 42, 102, 138, 282, 618, 642, 822, 1698, 1878, 2082, 2238, 2382, 2658, 2802, 3462, 3558, 3918, 4638, 4722, 5442, 6198, 6702, 8538, 8598, 9678, 10938, 12162, 12378, 12822, 12918, 13218, 13722, 13758, 13998, 14082, 16062, 17418, 19542
Offset: 1

Views

Author

Keywords

Comments

There are 106 of these numbers below 10^5.

Examples

			12 is a term: 12 = 2*2*3, and 11 and 13 primes.
		

Crossrefs

Cf. A014612.
Equals 6*A060212. - Zak Seidov and Esko Ranta, Dec 06 2009

Programs

  • Mathematica
    Select[Range[9! ],Plus@@Last/@FactorInteger[ # ]==3&&PrimeQ[ #-1]&&PrimeQ[ #+1]&]

A283809 Squarefree numbers k such that 6*k - 1 and 6*k + 1 are twin primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 17, 23, 30, 33, 38, 47, 58, 70, 77, 87, 95, 103, 107, 110, 137, 138, 143, 170, 177, 182, 205, 213, 215, 217, 238, 247, 278, 283, 287, 298, 313, 322, 347, 355, 357, 373, 385, 390, 397, 443, 455, 465, 467, 542, 543, 555, 562, 565, 577, 590, 593, 597, 642, 653, 655, 667, 670, 682
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2017

Keywords

Crossrefs

Subsequence of A002822 and of A005117. Supersequence of A060212.

Programs

  • Magma
    [n: n in [1..700] | IsSquarefree(n) and IsPrime(6*n-1) and IsPrime(6*n+1)];
    
  • Mathematica
    Select[Range[100], SquareFreeQ[#] && PrimeQ[6# - 1] && PrimeQ[6# + 1] &] (* Indranil Ghosh, Mar 17 2017 *)
  • PARI
    is(n)=isprime(6*n-1) && isprime(6*n+1) && issquarefree(n) \\ Charles R Greathouse IV, Mar 17 2017

A283957 Primes p such that 6p - 1 and 6p + 1 are twin primes and ((6p-1)^2 + (6p+1)^2) / 10 is prime.

Original entry on oeis.org

2, 7, 17, 467, 1033, 2287, 2333, 3413, 7523, 10357, 14723, 15073, 17467, 18077, 19423, 19583, 20177, 24337, 26113, 26357, 26987, 27437, 28627, 29327, 32077, 32323, 33637, 42787, 45127, 46183, 46273, 46457, 53093, 54443, 55333, 57493, 64927, 73363, 75133, 76213, 76493, 76907, 81883, 82633, 86587
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Mar 18 2017

Keywords

Comments

Only for prime p = 5 there are twin primes 6*5-1 = 29 and 6*5+1 = 31 such that 10 not divides (29^2 + 31^2) = 1802.

Examples

			7 is a term because 7, 6*7-1 = 41, 6*7+1 = 43, and (41^2 + 43^2)/10 = 353 are prime numbers.
		

Crossrefs

Subsequence of A060212.

Programs

  • Mathematica
    Select[Prime@ Range[10^4], Times @@ Boole@ Map[PrimeQ, 6 # + {-1, 1}] == 1 && PrimeQ[((6 # - 1)^2 + (6 # + 1)^2)/10] &] (* Michael De Vlieger, Mar 20 2017 *)
    Select[Prime[Range[8500]],AllTrue[{6#-1,6#+1,((6#-1)^2+(6#+1)^2)/10}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 09 2018 *)

Formula

a(n) == +-2 (mod 5).
Showing 1-10 of 15 results. Next