cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060636 A060448 sorted and duplicates removed.

Original entry on oeis.org

1, 2, 5, 9, 13, 16, 32, 59, 62, 68, 90, 135, 192, 256, 512, 817, 885, 913, 1059, 2110, 3000, 4096, 6197, 8192, 11087, 12240, 13562, 14064, 16745, 33425, 41043, 47489, 51583, 65536, 131072, 188263, 212210, 219910, 266254, 378744, 531924, 755444, 1048576
Offset: 1

Views

Author

Naohiro Nomoto, Apr 15 2001

Keywords

Crossrefs

Cf. A060448.

Extensions

a(15) inserted and a(19)-a(43) added by Charlie Neder, Oct 02 2018

A002808 The composite numbers: numbers n of the form x*y for x > 1 and y > 1.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Comments

The natural numbers 1,2,... are divided into three sets: 1 (the unit), the primes (A000040) and the composite numbers (A002808).
The number of composite numbers <= n (A065855) = n - pi(n) (A000720) - 1.
n is composite iff sigma(n) + phi(n) > 2n. This is a nice result of the well known theorem: For all positive integers n, n = Sum_{d|n} phi(d). For the proof see my contribution to puzzle 76 of Carlos Rivera's Primepuzzles. - Farideh Firoozbakht, Jan 27 2005, Jan 18 2015
The composite numbers have the semiprimes A001358 as primitive elements.
A211110(a(n)) > 1. - Reinhard Zumkeller, Apr 02 2012
A060448(a(n)) > 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) > 0. - Reinhard Zumkeller, Dec 14 2012
Composite numbers n which are the product of r=A001222(n) prime numbers are sometimes called r-almost primes. Sequences listing r-almost primes are: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
a(n) = A056608(n) * A160180(n). - Reinhard Zumkeller, Mar 29 2014
Degrees for which there are irreducible polynomials which are reducible mod p for all primes p, see Brandl. - Charles R Greathouse IV, Sep 04 2014
An integer is composite if and only if it is the sum of strictly positive integers in arithmetic progression with common difference 2: 4 = 1 + 3, 6 = 2 + 4, 8 = 3 + 5, 9 = 1 + 3 + 5, etc. - Jean-Christophe Hervé, Oct 02 2014
This statement holds since k+(k+2)+...+k+2(n-1) = n*(n+k-1) = a*b with arbitrary a,b (taking n=a and k=b-a+1 if b>=a). - M. F. Hasler, Oct 04 2014
For n > 4, these are numbers n such that n!/n^2 = (n-1)!/n is an integer (see A056653). - Derek Orr, Apr 16 2015
Let f(x) = Sum_{i=1..x} Sum_{j=2..i-1} cos((2*Pi*x*j)/i). It is known that the zeros of f(x) are the prime numbers. So these are the numbers n such that f(n) > 0. - Michel Lagneau, Oct 13 2015
Numbers n that can be written as solutions of the Diophantine equation n = (x+2)(y+2) where {x,y} in N^2, pairs of natural numbers including zero (cf. Mathematica code and Davis). - Ron R Spencer and Bradley Klee, Aug 15 2016
Numbers n with a partition (containing at least two summands) so that its summands also multiply to n. If n is prime, there is no way to find those two (or more) summands. If n is composite, simply take a factor or several, write those divisors and fill with enough 1's so that they add up to n. For example: 4 = 2*2 = 2+2, 6 = 1*2*3 = 1+2+3, 8 = 1*1*2*4 = 1+1+2+4, 9 = 1*1*1*3*3 = 1+1+1+3+3. - Juhani Heino, Aug 02 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 127.
  • Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.
  • R. K. Guy, Unsolved Problems Number Theory, Section A.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 66.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 51.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A008578. - Omar E. Pol, Dec 16 2016
Cf. A073783 (first differences), A073445 (second differences).
Boustrophedon transforms: A230954, A230955.
Cf. A163870 (nontrivial divisors).
Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Haskell
    a002808 n = a002808_list !! (n-1)
    a002808_list = filter ((== 1) . a066247) [2..]
    -- Reinhard Zumkeller, Feb 04 2012
    
  • Magma
    [n: n in [2..250] | not IsPrime(n)]; // G. C. Greubel, Feb 24 2024
    
  • Maple
    t := []: for n from 2 to 20000 do if isprime(n) then else t := [op(t),n]; fi; od: t; remove(isprime,[$3..89]); # Zerinvary Lajos, Mar 19 2007
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do ; end if; end proc; # R. J. Mathar, Oct 27 2009
  • Mathematica
    Select[Range[2,100], !PrimeQ[#]&] (* Zak Seidov, Mar 05 2011 *)
    With[{nn=100},Complement[Range[nn],Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, May 01 2012 *)
    Select[Range[100], CompositeQ] (* Jean-François Alcover, Nov 07 2021 *)
  • PARI
    A002808(n)=for(k=0,primepi(n),isprime(n++)&&k--);n \\ For illustration only: see below. - M. F. Hasler, Oct 31 2008
    
  • PARI
    A002808(n)= my(k=-1); while(-n + n += -k + k=primepi(n),); n \\ For n=10^4 resp. 3*10^4, this is about 100 resp. 500 times faster than the former; M. F. Hasler, Nov 11 2009
    
  • PARI
    forcomposite(n=1, 1e2, print1(n, ", ")) \\ Felix Fröhlich, Aug 03 2014
    
  • PARI
    for(n=1, 1e3, if(bigomega(n) > 1, print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
    
  • Python
    from sympy import primepi
    def A002808(n):
        m, k = n, primepi(n) + 1 + n
        while m != k:
            m, k = k, primepi(k) + 1 + n
        return m # Chai Wah Wu, Jul 15 2015, updated Apr 14 2016
    
  • Python
    from sympy import isprime
    def ok(n): return n > 1 and not isprime(n)
    print([k for k in range(89) if ok(k)]) # Michael S. Branicky, Nov 07 2021
    
  • Python
    next_A002808=lambda n: next(n for n in range(n,n*5)if not isprime(n)) # next composite >= n > 0; next_A002808(n)==n <=> iscomposite(n). - M. F. Hasler, Mar 28 2025
    is_A002808=lambda n:not isprime(n) and n>1 # where isprime(n) can be replaced with: all(n%d for d in range(2, int(n**.5)+1))
    # generators of composite numbers:
    A002808_upto=lambda stop=1<<59: filter(is_A002808, range(2,stop))
    A002808_seq=lambda:(q:=2)and(n for p in primes if (o:=q)<(q:=p) for n in range(o+1,p)) # with, e.g.: primes=filter(isprime,range(2,1<<59)) # M. F. Hasler, Mar 28 2025
    
  • SageMath
    [n for n in (2..250) if not is_prime(n)] # G. C. Greubel, Feb 24 2024

Formula

a(n) = pi(a(n)) + 1 + n, where pi is the prime counting function.
a(n) = A136527(n, n).
A000005(a(n)) > 2. - Juri-Stepan Gerasimov, Oct 17 2009
A001222(a(n)) > 1. - Juri-Stepan Gerasimov, Oct 30 2009
A000203(a(n)) < A007955(a(n)). - Juri-Stepan Gerasimov, Mar 17 2011
A066247(a(n)) = 1. - Reinhard Zumkeller, Feb 05 2012
Sum_{n>=1} 1/a(n)^s = Zeta(s)-1-P(s), where P is prime zeta. - Enrique Pérez Herrero, Aug 08 2012
n + n/log n + n/log^2 n < a(n) < n + n/log n + 3n/log^2 n for n >= 4, see Panaitopol. Bojarincev gives an asymptotic version. - Charles R Greathouse IV, Oct 23 2012
a(n) > n + A000720(n) + 1. - François Huppé, Jan 08 2025

Extensions

Deleted an incomplete and broken link. - N. J. A. Sloane, Dec 16 2010

A008578 Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Keywords

Comments

1 together with the primes; also called the noncomposite numbers.
Also largest sequence of nonnegative integers with the property that the product of 2 or more elements with different indices is never a square. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001 [Comment corrected by Farideh Firoozbakht, Aug 03 2014]
Numbers k whose largest divisor <= sqrt(k) equals 1. (See also A161344, A161345, A161424.) - Omar E. Pol, Jul 05 2009
Numbers k such that d(k) <= 2. - Juri-Stepan Gerasimov, Oct 17 2009
Also first column of array in A163280. Also first row of array in A163990. - Omar E. Pol, Oct 24 2009
Possible values of A136548(m) in increasing order, where A136548(m) = the largest numbers h such that A000203(h) <= k (k = 1,2,3,...), where A000203(h) = sum of divisors of h. - Jaroslav Krizek, Mar 01 2010
Where record values of A022404 occur: A086332(n)=A022404(a(n)). - Reinhard Zumkeller, Jun 21 2010
Positive integers that have no divisors other than 1 and itself (the old definition of prime numbers). - Omar E. Pol, Aug 10 2012
Conjecture: the sequence contains exactly those k such that sigma(k) > k*BigOmega(k). - Irina Gerasimova, Jun 08 2013
Note on the Gerasimova conjecture: all terms in the sequence obviously satisfy the inequality, because sigma(p) = 1+p and BigOmega(p) = 1 for primes p, so 1+p > p*1. For composites, the (opposite) inequality is heuristically correct at least up to k <= 4400000. The general proof requires to show that BigOmega(k) is an upper limit of the abundancy sigma(k)/k for composite k. This proof is easy for semiprimes k=p1*p2 in general, where sigma(k)=1+p1+p2+p1*p2 and BigOmega(k)=2 and p1, p2 <= 2. - R. J. Mathar, Jun 12 2013
Numbers k such that phi(k) + sigma(k) = 2k. - Farideh Firoozbakht, Aug 03 2014
isA008578(n) <=> k is prime to n for all k in {1,2,...,n-1}. - Peter Luschny, Jun 05 2017
In 1751 Leonhard Euler wrote: "Having so established this sign S to indicate the sum of the divisors of the number in front of which it is placed, it is clear that, if p indicates a prime number, the value of Sp will be 1 + p, except for the case where p = 1, because then we have S1 = 1, and not S1 = 1 + 1. From this we see that we must exclude unity from the sequence of prime numbers, so that unity, being the start of whole numbers, it is neither prime nor composite." - Omar E. Pol, Oct 12 2021
a(1) = 1; for n >= 2, a(n) is the least unused number that is coprime to all previous terms. - Jianing Song, May 28 2022
A number p is preprime if p = a*b ==> a = 1 or b = 1. This sequence lists the preprimes in the commutative monoid IN \ {0}. - Peter Luschny, Aug 26 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 84 at pp. 214-217.
  • G. Chrystal, Algebra: An Elementary Textbook. Chelsea Publishing Company, 7th edition, (1964), chap. III.7, p. 38.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 11.
  • H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035
  • D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
  • D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
  • R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
  • H. C. Williams and J. O. Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143

Crossrefs

The main entry for this sequence is A000040.
The complement of A002808.
Cf. A000732 (boustrophedon transform).
Cf. A023626 (self-convolution).

Programs

  • GAP
    A008578:=Concatenation([1],Filtered([1..10^5],IsPrime)); # Muniru A Asiru, Sep 07 2017
  • Haskell
    a008578 n = a008578_list !! (n-1)
    a008578_list = 1 : a000040_list
    -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    [1] cat [n: n in PrimesUpTo(271)];  // Bruno Berselli, Mar 05 2011
    
  • Maple
    A008578 := n->if n=1 then 1 else ithprime(n-1); fi :
  • Mathematica
    Join[ {1}, Table[ Prime[n], {n, 1, 60} ] ]
    NestList[ NextPrime, 1, 57] (* Robert G. Wilson v, Jul 21 2015 *)
    oldPrimeQ[n_] := AllTrue[Range[n-1], CoprimeQ[#, n]&];
    Select[Range[271], oldPrimeQ] (* Jean-François Alcover, Jun 07 2017, after Peter Luschny *)
  • PARI
    is(n)=isprime(n)||n==1
    
  • Sage
    isA008578 = lambda n: all(gcd(k, n) == 1 for k in (1..n-1))
    print([n for n in (1..271) if isA008578(n)]) # Peter Luschny, Jun 07 2017
    

Formula

a(n) = A000040(n-1).
m is in the sequence iff sigma(m) + phi(m) = A065387(m) = 2m. - Farideh Firoozbakht, Jan 27 2005
a(n) = A158611(n+1) for n >= 1. - Jaroslav Krizek, Jun 19 2009
In the following formulas (based on emails from Jaroslav Krizek and R. J. Mathar), the star denotes a Dirichlet convolution between two sequences, and "This" is A008578.
This = A030014 * A008683. (Dirichlet convolution using offset 1 with A030014)
This = A030013 * A000012. (Dirichlet convolution using offset 1 with A030013)
This = A034773 * A007427. (Dirichlet convolution)
This = A034760 * A023900. (Dirichlet convolution)
This = A034762 * A046692. (Dirichlet convolution)
This * A000012 = A030014. (Dirichlet convolution using offset 1 with A030014)
This * A008683 = A030013. (Dirichlet convolution using offset 1 with A030013)
This * A000005 = A034773. (Dirichlet convolution)
This * A000010 = A034760. (Dirichlet convolution)
This * A000203 = A034762. (Dirichlet convolution)
A002033(a(n))=1. - Juri-Stepan Gerasimov, Sep 27 2009
a(n) = A181363((2*n-1)*2^k), k >= 0. - Reinhard Zumkeller, Oct 16 2010
a(n) = A001747(n)/2. - Omar E. Pol, Jan 30 2012
A060448(a(n)) = 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2012
Sum_{n>=1} x^a(n) = (Sum_{n>=1} (A002815(n)*x^n))*(1-x)^2. - L. Edson Jeffery, Nov 25 2013
Showing 1-3 of 3 results.