cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001400 Number of partitions of n into at most 4 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350, 1425, 1495
Offset: 0

Views

Author

Keywords

Comments

Molien series for 4-dimensional representation of S_4 [Nebe, Rains, Sloane, Chap. 7].
Also number of pure 2-complexes on 4 nodes with n multiple 2-simplexes. - Vladeta Jovovic, Dec 27 1999
Also number of different integer triangles with perimeter <= n+3. Also number of different scalene integer triangles with perimeter <= n+9. - Reinhard Zumkeller, May 12 2002
a(n) is the coefficient of q^n in the expansion of (m choose 4)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Also number of partitions of n into parts <= 4. a(n) = A026820(n,4), for n > 3. - Reinhard Zumkeller, Jan 21 2010
Number of different distributions of n+10 identical balls in 4 boxes as x,y,z,p where 0 < x < y < z < p. - Ece Uslu and Esin Becenen, Jan 11 2016
Number of partitions of 5n+8 or 5n+12 into 4 parts (+-) 3 mod 5. a(4) = 5 partitions of 28: [7,7,7,7], [12,7,7,2], [12,12,2,2], [17,7,2,2], [22,2,2,2]. a(3) = 3 partitions of 27: [8,8,8,3], [13,8,3,3], [18,3,3,3]. - Richard Turk, Feb 24 2016
a(n) is the total number of non-isomorphic geodetic graphs of diameter n homeomorphic to a complete graph K4. - Carlos Enrique Frasser, May 24 2018

Examples

			(4 choose 4)_q = 1, (5 choose 4)_q = q^4 + q^3 + q^2 + q + 1, (6 choose 4)_q = q^8 + q^7 + 2*q^6 + 2*q^5 + 3*q^4 + 2*q^3 + 2*q^2 + q + 1, (7 choose 4) = q^12 + q^11 + 2*q^10 + 3*q^9 + 4*q^8 + 4*q^7 + 5*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 2*q^2 + q + 1 so the coefficient of q^0 converges to 1, q^1 to 1, q^2 to 2 and so on.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 11*x^7 + ...
a(4) = 5, i.e., {1,2,3,8}, {1,2,4,7}, {1,2,5,6}, {2,3,4,5}, {1,3,4,6}. Number of different distributions of 14 identical balls in 4 boxes as x,y,z,p where 0 < x < y < z < p. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, row m=4 of Q(m,n) table; p. 120, P(n,4).
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • D. E. Knuth, The Art of Computer Programming, vol. 4, Fascicle 3, Generating All Combinations and Partitions, Addison-Wesley, 2005, Section 7.2.1.4., p. 56, exercise 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A026810. Partial sums of A005044.
a(n) = A008284(n+4, 4), n >= 0.
First differences of A002621.

Programs

  • Haskell
    a001400 n = a001400_list !! n
    a001400_list = scanl1 (+) a005044_list -- Reinhard Zumkeller, Feb 28 2013
  • Magma
    K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; G:=MatrixGroup<4,K|q1,q2,h>; MolienSeries(G);
    
  • Maple
    A001400 := n->if n mod 2 = 0 then round(n^2*(n+3)/144); else round((n-1)^2*(n+5)/144); fi;
    with(combstruct):ZL5:=[S,{S=Set(Cycle(Z,card<5))}, unlabeled]:seq(count(ZL5,size=n),n=0..55); # Zerinvary Lajos, Sep 24 2007
    A001400:=-(-z**8+z**9+2*z**4-z**7-1-z)/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**4; # [conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for an initial 1]
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=4)},unlabelled]: seq(combstruct[count](B, size=n), n=0..55); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 65} ], x ]
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {1, 1, 2, 3, 5, 6, 9, 11, 15, 18}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    a[n_] := Sum[Floor[(n - j - 3*k + 2)/2], {j, 0, Floor[n/4]}, {k, j, Floor[(n - j)/3]}]; Table[a[n], {n, 0, 55}] (* L. Edson Jeffery, Jul 31 2014 *)
    a[ n_] := With[{m = n + 5}, Round[ (2 m^3 - 3 m (5 + 3 (-1)^m)) / 288]]; (* Michael Somos, Dec 29 2014 *)
    a[ n_] := With[{m = Abs[n + 5] - 5}, Sign[n + 5] Length[ IntegerPartitions[ m, 4]]]; (* Michael Somos, Dec 29 2014 *)
    a[ n_] := With[{m = Abs[n + 5] - 5}, Sign[n + 5] SeriesCoefficient[ 1 / ((1 - x) (1 - x^2) (1 - x^3) (1 - x^4)), {x, 0, m}]]; (* Michael Somos, Dec 29 2014 *)
    Table[Length@IntegerPartitions[n, 4], {n, 0, 55}] (* Robert Price, Aug 18 2020 *)
  • PARI
    a(n) = round(((n+4)^3 + 3*(n+4)^2 -9*(n+4)*((n+4)% 2))/144) \\ Washington Bomfim, Jul 03 2012
    
  • PARI
    {a(n) = n+=5; round( (2*n^3 - 3*n*(5 + 3*(-1)^n)) / 288)}; \\ Michael Somos, Dec 29 2014
    
  • PARI
    a(n) = #partitions(n,,4); \\ Ruud H.G. van Tol, Jun 02 2024
    

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
a(n) = 1 + (a(n-2) + a(n-3) + a(n-4)) - (a(n-5) + a(n-6) + a(n-7)) + a(n-9). - Norman J. Meluch (norm(AT)iss.gm.com), Mar 09 2000
P(n, 4) = (1/288)*(2*n^3 + 6*n^2 - 9*n - 13 + (9*n+9)*pcr{1, -1}(2, n) - 32*pcr{1, -1, 0}(3, n) - 36*pcr{1, 0, -1, 0}(4, n)) (see Comtet).
Let c(n) = Sum_{i=0..floor(n/3)} (1 + ceiling((n-3*i-1)/2)), then a(n) = Sum_{i=0..floor(n/4)} (1 + ceiling((n-4*i-1)/2) + c(n-4*i-3)). - Jon Perry, Jun 27 2003
Euler transform of finite sequence [1, 1, 1, 1].
(n choose 4)_q = (q^n-1)*(q^(n-1)-1)*(q^(n-2)-1)*(q^(n-3)-1)/((q^4-1)*(q^3-1)*(q^2-1)*(q-1)).
a(n) = round(((n+4)^3 + 3*(n+4)^2 - 9*(n+4)*((n+4) mod 2))/144). - Washington Bomfim, Jul 03 2012
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10). - David Neil McGrath, Sep 12 2014
a(n) = -a(-10-n) for all n in Z. - Michael Somos, Dec 29 2014
a(n) - a(n+1) - a(n+3) + a(n+4) = 0 if n is odd, else floor(n/4) + 2 for all n in Z. - Michael Somos, Dec 29 2014
a(n) = n^3/144 + n^2/24 - 7*n/144 + 1 + floor(n/4)/4 + floor(n/3)/3 + (n+5)*floor(n/2)/8 + floor((n+1)/4)/4. - Vaclav Kotesovec, Aug 18 2015
a(n) = a(n-4) + A001399(n). - Ece Uslu, Esin Becenen, Jan 11 2016, corrected Sep 25 2020
a(6*n) - a(6*n+1) - a(6*n+4) + a(6*n+5) = n+1. - Richard Turk, Apr 19 2016
a(n) = a(n-1) + A005044(n+3) for n>0, i.e., first differences is A005044. - Yuchun Ji, Oct 12 2020
From Vladimír Modrák and Zuzana Soltysova, Dec 09 2020: (Start)
a(n) = round((n + 3)^2/12) + Sum_{i=0..floor(n/4)} round((n - 4*i - 1)^2/12).
a(n) = floor(((n + 3)^2 + 4)/12) + Sum_{i=0..floor(n/4)} floor(((n - 4*i - 1)^2 + 4)/12). (End)
a(n) - a(n-3) = A008642(n). - R. J. Mathar, Jun 23 2021
a(n) - a(n-2) = A025767(n). - R. J. Mathar, Jun 23 2021
a(n) = round((2*n^3 + 30*n^2 + 135*n + 175)/288 + (-1)^n*(n+5)/32). - Dave Neary, Oct 28 2021
From Vladimír Modrák, Jul 13 2022: (Start)
a(n) = Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0,n + 1 - 3*i - 4*j))/2).
a(n) = Sum_{i=0..floor(n/4)} floor(((n + 3 - 4*i)^2 + 4)/12). (End)
a(n) = floor(((n+4)^2*(n+7) - 9*(n+4)*(n mod 2) + 32)/144). - Vladimír Modrák, Mar 23 2025

A365340 a(n) = (4*n)!/(3*n+1)!.

Original entry on oeis.org

1, 1, 8, 132, 3360, 116280, 5100480, 271252800, 16963914240, 1220096908800, 99225500774400, 9003984596006400, 901928094049382400, 98856066097780992000, 11768525894839633920000, 1512185803617951221760000, 208598907329474462760960000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (4*n)!/(3*n+1)!;
    
  • Python
    from sympy import ff
    def A365340(n): return ff(n<<2,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002293(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^3).
a(n) = Sum_{k=0..n} (3*n+1)^(k-1) * |Stirling1(n,k)|. (End)

A166338 a(n) = (4*n)!/n!.

Original entry on oeis.org

1, 24, 20160, 79833600, 871782912000, 20274183401472000, 861733891296165888000, 60493719168990845337600000, 6526062423950732395020288000000, 1025113885554181044609786839040000000, 224844379201911853600532206127677440000000, 66595307609539060446820030939720014888960000000
Offset: 0

Views

Author

Karol A. Penson, Oct 12 2009

Keywords

Comments

Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n) = Integral_{x=0..oo} ( x^n*((1/16*(2*Pi^(3/2)*sqrt(2)*hypergeom([], [1/2, 3/4], -(1/256)*x)*sqrt(x) -2*Pi*sqrt(2)*hypergeom([], [3/4, 5/4], -(1/256)*x)*Gamma(3/4)*x^(3/4) +sqrt(Pi)*Gamma(3/4)^2*hypergeom([], [5/4, 3/2], -(1/256)*x)*x))*sqrt(2)/(Gamma(3/4)*x^(5/4)*Pi^(3/2))) ).
This solution may not be unique.

Crossrefs

Programs

  • Magma
    [Factorial(4*n) / Factorial(n): n in [0..15]]; // Vincenzo Librandi, May 10 2016
  • Maple
    A166338_list := proc(n) u:=z^(1/4);(cosh(u)+cos(u))/2:series(%,z,n+2):
    seq(1/(i!*coeff(%,z,i)),i=0..n) end: A166338_list(9); # Peter Luschny, Jul 12 2012
  • Mathematica
    Table[(4n)!/n!,{n,0,10}] (* Harvey P. Dale, May 30 2015 *)

Formula

G.f.: Sum_{n>=0} a(n)*x^n/(n!)^3 = hypergeom([1/4, 1/2, 3/4], [1, 1], 256*x).
a(n) ~ 2*(1-1/(16*n)+1/(512*n^2)+331/(122880*n^3)+O(1/n^4)))*(2^n)^8/(((1/n)^n)^3*(exp(n))^3).
1/a(n) = n!*[x^n](cosh(x^(1/4))+cos(x^(1/4)))/2. - Peter Luschny, Jul 12 2012
From Seiichi Manyama, May 25 2025: (Start)
a(n) = RisingFactorial(n+1,3*n).
a(n) = (3*n)! * [x^(3*n)] 1/(1 - x)^(n+1). (End)

A384164 a(n) = Product_{k=0..n-1} (3*n+k).

Original entry on oeis.org

1, 3, 42, 990, 32760, 1395360, 72681840, 4475671200, 318073392000, 25622035084800, 2306992893004800, 229601607198163200, 25028504609870361600, 2965681982933429760000, 379534960108578193920000, 52170410224819317150720000, 7666009844358186506465280000, 1199151678674216896627654656000
Offset: 0

Views

Author

Seiichi Manyama, May 21 2025

Keywords

Crossrefs

Programs

  • Magma
    [1] cat  [&*[(3*n + k): k in [0..n-1]]: n in [1..16]]; // Vincenzo Librandi, May 22 2025
  • Mathematica
    a[n_]:=Product[(3*n+k),{k,0,n-1}]; Table[a[n],{n,0,15}] (* Vincenzo Librandi, May 22 2025 *)
  • PARI
    a(n) = prod(k=0, n-1, 3*n+k);
    
  • Python
    from sympy import rf
    def A384164(n): return rf(3*n,n) # Chai Wah Wu, May 21 2025
    
  • Sage
    def a(n): return rising_factorial(3*n, n)
    

Formula

a(n) = RisingFactorial(3*n,n) = A124320(3*n,n) = n! * binomial(4*n-1,n).
a(n) = n! * [x^n] 1/(1 - x)^(3*n).
a(n) = (3/4) * A061924(n) for n > 0.

A384262 a(n) = Product_{k=0..n-1} (3*n+k-2).

Original entry on oeis.org

1, 1, 20, 504, 17160, 742560, 39070080, 2422728000, 173059286400, 13995229248000, 1264020397516800, 126115611484262400, 13776096431889792000, 1635195634511530291200, 209574860127295703040000, 28844656968251942737920000, 4243193364951971128258560000, 664387519844376163893657600000
Offset: 0

Views

Author

Seiichi Manyama, May 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 3*n+k-2);
    
  • Python
    from sympy import rf
    def a(n): return rf(3*n-2, n)
    
  • Sage
    def a(n): return rising_factorial(3*n-2, n)

Formula

a(n) = RisingFactorial(3*n-2,n).
a(n) = n! * [x^n] 1/(1 - x)^(3*n-2).
a(n) = n! * binomial(4*n-3,n).
D-finite with recurrence 3*(3*n-4)*(3*n-5)*a(n) -8*(4*n-5)*(4*n-3)*(2*n-3)*a(n-1)=0. - R. J. Mathar, May 26 2025

A384263 a(n) = Product_{k=0..n-1} (3*n+k-1).

Original entry on oeis.org

1, 2, 30, 720, 24024, 1028160, 53721360, 3315312000, 235989936000, 19033511777280, 1715456253772800, 170866312333516800, 18638248113733248000, 2209723830420986880000, 282926061171849199104000, 38906746608339829739520000, 5719086709283091520696320000, 894889312443445445244518400000
Offset: 0

Views

Author

Seiichi Manyama, May 23 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n!*Binomial[4*n-2,n]; Array[a,18,0] (* Stefano Spezia, Sep 04 2025 *)
  • PARI
    a(n) = prod(k=0, n-1, 3*n+k-1);
    
  • Python
    from sympy import rf
    def a(n): return rf(3*n-1, n)
    
  • Sage
    def a(n): return rising_factorial(3*n-1, n)

Formula

a(n) = RisingFactorial(3*n-1,n).
a(n) = n! * [x^n] 1/(1 - x)^(3*n-1).
a(n) = n! * binomial(4*n-2,n).
From Stefano Spezia, Sep 04 2025: (Start)
E.g.f.: (1 + 3*hypergeom([-1/4, 1/4, 1/2], [-1/3, 1/3], 2^8*x/3^3])/4.
a(n) ~ 2^(8*n-7)*3^(-3*n-1/2)*exp(-n)*n^(n-1)*(144*n - 13). (End)

A384242 a(n) = Product_{k=0..n-1} (4*n-5*k).

Original entry on oeis.org

1, 4, 24, 168, 1056, 0, -229824, -7233408, -162860544, -2573835264, 0, 2333140153344, 131053381595136, 4948323499671552, 124773727026364416, 0, -256422032696998232064, -20710128948965418074112, -1096668276542495972130816, -37948699305215165278715904, 0
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 4*n-5*k);
    
  • Sage
    def a(n): return 5^n*falling_factorial(4*n/5, n)

Formula

a(n) = 5^n * FallingFactorial(4*n/5,n).
a(n) = n! * [x^n] (1 + 5*x)^(4*n/5).
a(n) = 4 * (-1)^(n-1) * A383997(n) for n > 0.
a(5*n) = 0 for n > 0.
D-finite with recurrence a(n) +8*n*(4*n-15)*(4*n-5)*(n-5)*(2*n-5)*a(n-5)=0. - R. J. Mathar, May 26 2025
Showing 1-7 of 7 results.