cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A027423 Number of divisors of n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 30, 60, 96, 160, 270, 540, 792, 1584, 2592, 4032, 5376, 10752, 14688, 29376, 41040, 60800, 96000, 192000, 242880, 340032, 532224, 677376, 917280, 1834560, 2332800, 4665600, 5529600, 7864320, 12165120, 16422912
Offset: 0

Views

Author

Glen Burch (gburch(AT)erols.com), Leroy Quet

Keywords

Comments

It appears that a(n+1)=2*a(n) if n is in A068499. - Benoit Cloitre, Sep 07 2002
Because a(0) = 1 and for all n > 0, 2*a(n) >= a(n+1), the sequence is a complete sequence. - Frank M Jackson, Aug 09 2013
Luca and Young prove that a(n) divides n! for n >= 6. - Michel Marcus, Nov 02 2017

Examples

			a(4) = 8 because 4!=24 has precisely eight distinct divisors: 1, 2, 3, 4, 6, 8, 12, 24.
		

Crossrefs

Cf. A000005, A000142, A062569, A131688, A161466 (divisors of 10!).

Programs

  • Haskell
    a027423 n = f 1 $ map (\p -> iterate (* p) p) a000040_list where
       f y ((pps@(p:_)):ppss)
         | p <= n = f (y * (sum (map (div n) $ takeWhile (<= n) pps) + 1)) ppss
         | otherwise = y
    -- Reinhard Zumkeller, Feb 27 2013
    (Python 3.8+)
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A027423(n): return prod(e+1 for e in sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 25 2022
  • Maple
    A027423 := n -> numtheory[tau](n!);
  • Mathematica
    Table[ DivisorSigma[0, n! ], {n, 0, 35}]
  • PARI
    for(k=0,50,print1(numdiv(k!),", ")) \\ Jaume Oliver Lafont, Mar 09 2009
    
  • PARI
    a(n)=my(s=1,t,tt);forprime(p=2,n,t=tt=n\p; while(tt, t+=tt\=p); s*=t+1); s \\ Charles R Greathouse IV, Feb 08 2013
    

Formula

a(n) <= a(n+1) <= 2*a(n) - Benoit Cloitre, Sep 07 2002
From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 28 2009: (Start)
Assume, p1,p2...pm are the prime numbers less than or equal to n.
Then, a(n) = Product_{i=1..m} (bi+1), where bk = Sum_{i=1..m} floor(n/pk^i).
For example, if n=5, p1=2,p2=3,p3=5;
b1=floor(5/2)+floor(5/2^2)+floor(5/2^3)+...=2+1+0+..=3 similarly, b2=b3=1;
Thus a(5)=(3+1)(1+1)(1+1)=16. (End)
a(n) = A000005(A000142(n)). - Michel Marcus, Sep 13 2014
a(n) ~ exp(c * n/log(n) + O(n/log(n)^2)), where c = A131688 (Erdős et al., 1996). - Amiram Eldar, Nov 07 2020

A079210 Positive divisors of n!, listed in increasing order for each n, a new row for each n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 6, 1, 2, 3, 4, 6, 8, 12, 24, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
Offset: 0

Views

Author

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

Keywords

Comments

Elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!)
This sequence is the same as A070861 for the first 38 terms, but differs thereafter.

Examples

			First few rows are:
1;
1;
1,2;
1,2,3,6;
1,2,3,4,6,8,12,24;
1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120;
...
		

Crossrefs

Cf. A027423 (row lengths), A062569 (row sums), A070861.

Programs

  • Magma
    [Divisors(Factorial(n)): n in [0..10]]; // Vincenzo Librandi, Jun 19 2015
    
  • Mathematica
    Flatten[Table[Divisors[n!],{n,6}]]  (* Harvey P. Dale, Mar 13 2011 *)
  • PARI
    tabf(nn) = for (n=0, nn, print(divisors(n!))); \\ Michel Marcus, Jun 19 2015

Extensions

a(0)=1 prepended by Andrew Howroyd, Jan 26 2022

A068499 Numbers m such that m! reduced modulo (m+1) is not zero.

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270
Offset: 1

Views

Author

Benoit Cloitre, Mar 11 2002

Keywords

Comments

Also n such that tau((n+1)!) = 2* tau(n!)
For n > 2, a(n) is the smallest number such that a(n) !== -1 (mod a(k)+1) for any 1 < k < n. [Franklin T. Adams-Watters, Aug 07 2009]
Also n such that sigma((n+1)!) = (n+2)* sigma(n!), which is the same as A062569(n+1) = (n+2)*A062569(n). - Zak Seidov, Aug 22 2012
This sequence is obtained by the following sieve: keep 1 in the sequence and then, at the k-th step, keep the smallest number, x say, that has not been crossed off before and cross off all the numbers of the form k*(x + 1) - 1 with k > 1. The numbers that are left form the sequence. - Jean-Christophe Hervé, Dec 12 2015
a(n) = A039915(n-1) for 3 < n <= 1000. - Georg Fischer, Oct 19 2018

Examples

			Illustration of the sieve: keep 1 = a(1) and then
1st step: take 2 = a(2) and cross off 5, 8, 11, 14, 17, 20, 23, 26, etc.
2nd step: take 3 = a(3) and cross off 7, 11, 15, 19, 23, 27, etc.
3rd step: take 4 = a(4) and cross off 9, 14, 19, 24, etc.
4th step: take 6 = a(5) and cross off 13, 19, 25 etc.
10 is obtained at next step and the smallest crossed off numbers are then 21 and 28. This gives the beginning of the sequence up to 22 = a(10): 1, 2, 3, 4, 6, 10, 12, 16, 18, 22. - _Jean-Christophe Hervé_, Dec 12 2015
		

Crossrefs

Cf. A000040, A039915, A062569, A166460 (almost complement).

Programs

  • Mathematica
    Select[Range[300],Mod[#!,#+1]!=0&] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    {plnt=1 ; nfa=1; mxind=60 ;  for(k=1, 10^7, nfa=nfa*k;
    if(nfa % (k+1) != 0 , print1(k, ", "); plnt++ ;
    if(mxind <  plnt, break() )))} \\ Douglas Latimer, Apr 25 2012
    
  • PARI
    a(n)=if(n<5,n,prime(n-1)-1) \\ Charles R Greathouse IV, Apr 25 2012
    
  • Python
    from sympy import prime
    def A068499(n): return prime(n-1)-1 if n>3 else n # Chai Wah Wu, Aug 27 2024

Formula

For n >= 4, a(n) = prime(n-1) - 1 = A006093(n-1).
For n <> 3, all terms are one less prime. - Zak Seidov, Aug 22 2012
a(n) = Integer part of A078456(n+1)/A078456(n). - Eric Desbiaux, May 07 2013

A078156 A078153(n!).

Original entry on oeis.org

0, 0, 0, 0, 46, 702, 7479, 97902, 1231886, 15977798, 208298944, 3085485116, 45879947392, 749485746579, 12963973882204, 236404256556347, 4415737043058504, 88721524940832020, 1830113429944169943, 40228564066847381090, 921832573196324390682
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Table[Floor[w!/j], {j, 1, w!}]]] -DivisorSigma[1, w! ], {w, 1, 9}]

Formula

a(n) = A078153(n!) = A078162(n) - A062569(n)

Extensions

Terms a(10) onward from Max Alekseyev, Feb 12 2012

A167367 a(n) = sigma(n!!) where n!! is A006882(n).

Original entry on oeis.org

1, 1, 3, 4, 15, 24, 124, 192, 1020, 1920, 12264, 23040, 159666, 322560, 2555280, 5041344, 40893840, 90744192, 761260368, 1814883840, 15732804296, 38900010240, 377587663200, 933600245760, 9087075973248, 23520702965760, 254438142416640
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062569.

Programs

  • Mathematica
    Join[{1},Array[DivisorSigma[1,#!! ]&,50,1]]
  • PARI
    a(n)=sigma(prod(i=0, (n-1)\2, n - 2*i )) \\ Charles R Greathouse IV, May 01 2016

Formula

a(n) = A000203(A006882(n)). - R. J. Mathar, Feb 07 2011

A366757 a(n) is the sum of the divisors of n!-1.

Original entry on oeis.org

1, 6, 24, 144, 720, 5040, 42096, 399000, 3753960, 47500992, 479001600, 6230615736, 87178291200, 1457696910960, 20929670124480, 379536693283440, 6510917252872320, 121831439598033840, 2432921507427445440, 53921727651043042560, 1134312679767378217920
Offset: 2

Views

Author

Sean A. Irvine, Oct 20 2023

Keywords

Examples

			a(5) = 144 because the divisors of 5!-1 are {1, 7, 17, 119}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](n!-1):
    seq(a(n), n=2..30);
  • Mathematica
    DivisorSigma[1,Range[2,25]!-1] (* Paolo Xausa, Oct 21 2023 *)
  • Python
    from math import factorial
    from sympy import divisor_sigma
    def A366757(n): return divisor_sigma(factorial(n)-1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = sigma(n!-1) = A000203(A033312(n)).

A061556 a(n) is the least k > 0 such that sigma(k!) >= n*k!.

Original entry on oeis.org

1, 1, 3, 5, 9, 14, 23, 43, 79, 149, 263, 461, 823, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677
Offset: 0

Views

Author

Labos Elemer, May 17 2001

Keywords

Comments

It seems that, for n > 1, a(n+1) < 2*a(n). Does lim_{n -> infinity} a(n+1)/a(n) = 2? - Benoit Cloitre, Aug 18 2002
Smallest number m such that the abundancy-index of m! is at least n.
Floor(sigma(m!)/m!) = n; note that abundancy-index [= sigma(u)/u] here is not necessarily an integer.
It appears that a(n) = A091440(n) for n >= 13. - Daniel Suteu, Sep 03 2019

Examples

			floor(sigma(842!)/842!) = 11 while floor(sigma(843!)/843!) = 12.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,s=1; while(sigma(s!)
    				

Formula

a(n) = Min{w | floor(sigma(w!)/w!) = n}.

Extensions

More terms from David Wasserman, Jun 18 2002
a(1) inserted and a(21)-a(30) added by Daniel Suteu, Sep 03 2019

A064028 Sum of the unitary divisors of n!.

Original entry on oeis.org

1, 3, 12, 36, 216, 1020, 8160, 61920, 507744, 4383392, 52600704, 624249600, 8739494400, 109190390400, 1583122968000, 25318378008000, 455730804144000, 8193040840252800, 163860816805056000, 3256371347261760000, 67204676251838361600, 1366492477414792734720
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			n=6, 6! = 720, sum of the 8 unitary ones of its 30 divisors is 1020, a(6) = 720+1+16+45+9+80+5+144 = 1020.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma/@ (Range[17]!) (* Amiram Eldar, Jun 23 2019 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(s=1); forprime(p=2,n, s*=p^valp(n,p)+1); s \\ Charles R Greathouse IV, Jan 26 2023

Formula

a(n) = usigma(n!) = A034448(A000142(n)).
a(n)/n! <= 2 (while usigma(n)/n and sigma(n!)/n! are unbounded; Wall, 1984). - Amiram Eldar, Feb 08 2022

A104353 Sum of divisors of A104350(n).

Original entry on oeis.org

1, 3, 12, 28, 168, 546, 4368, 9360, 28800, 148800, 1785600, 5401440, 75620160, 538793640, 2711348640, 5603453856, 100862169408, 303420079872, 6068401597440, 30380907997440, 213199354368000, 2362959510912000, 56711028261888000, 170288884313856000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]]] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = {my(p = factor(n)[, 1]); p[#p];}
    a(n) = sigma(prod(k = 2, n, gpf(k))); \\ Amiram Eldar, Apr 08 2024

Formula

a(n) = A000203(A104350(n)).

Extensions

a(14), a(21) corrected by Georg Fischer, Feb 28 2023

A153824 Sum of proper divisors of n!: a(n) = sigma(n!) - n!.

Original entry on oeis.org

0, 0, 1, 6, 36, 240, 1698, 14304, 118800, 1118160, 11705288, 144092256, 1738439808, 24817158912, 355309325280, 5378578601760, 86081749397280, 1570394279039040, 28281459220193088, 572031558109589760, 11458497230555094720
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Comments

a(n) is the sum of proper divisors of factorial number A000142(n).

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,Factorial(n)) - Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 31 2016
    
  • Maple
    with(numtheory): seq(sigma(factorial(n))-factorial(n), n = 0 .. 22); # Emeric Deutsch, Jan 07 2009
  • Mathematica
    Table[DivisorSigma[1, n!] - n!, {n, 0, 50}] (* G. C. Greubel, Aug 30 2016 *)
  • PARI
    a(n) = sigma(n!) - n!; \\ Michel Marcus, Aug 31 2016

Formula

a(n) = A000203(n!) - n! = A062569(n) - A000142(n) = A001065(A000142(n)).

Extensions

Extended by Emeric Deutsch, Jan 07 2009
Showing 1-10 of 25 results. Next